【摘要】第2課時勾股定理(二),也可以表示,數(shù)軸上的點和.一一對應(yīng).(,,…)的點.如圖所示..有關(guān)銳角三角形或鈍角三角形的計算問題也可以轉(zhuǎn)化為含有三角形的計算問題,應(yīng)用勾股定理加以解決,關(guān)鍵在于找出這個三角形.23無理數(shù)實數(shù)
2025-06-21 12:23
【摘要】第十七章勾股定理勾股定理第1課時勾股定理的驗證勾股定理:如果直角三角形的兩直角邊長分別為a,b,斜邊長為c,那么a,b,c三條邊滿足的關(guān)系式是.a2+b2=c2知識點1:勾股定理的認識解:(1)A所代表的正方形的面積為144+81=225.(2)B所代表的正方形的面積為625-400=22
2025-06-25 15:03
【摘要】第2課時 勾股定理的應(yīng)用知識點1知識點2勾股定理的實際應(yīng)用樹,一棵高10?m,另一棵高4?m,兩樹相距8?鳥從一棵樹的樹梢飛到另一棵樹的樹梢,問小鳥至少飛行(??B??)?m?m?m?m
2025-06-24 12:01
【摘要】第2課時 勾股定理的實際應(yīng)用實際生活中的與直角三角形有關(guān)的許多問題.如長度、高度、距離、面積、體積等問題往往需要用勾股定理來解決.強量得家里新購置的彩電熒光屏的長為58cm,寬為46cm,則這臺電視機的尺寸(即電視機屏幕對角線的長度,實際測量的誤差可不計)是( )(約2
2025-06-23 05:26
【摘要】第十七章勾股定理勾股定理第2課時勾股定理的實際應(yīng)用學習指南知識管理歸類探究分層作業(yè)當堂測評學習指南★本節(jié)學習主要解決以下問題★勾股定理的實際應(yīng)用此內(nèi)容為本節(jié)的重點,也是難點.為此設(shè)計了【歸類探究】中
2025-06-25 12:10
2025-06-22 14:25
【摘要】第十七章勾股定理勾股定理第3課時利用勾股定理證明與作圖學習指南知識管理歸類探究分層作業(yè)當堂測評學習指南★本節(jié)學習主要解決以下問題★1.利用勾股定理表示無理數(shù)此內(nèi)容為本節(jié)的重點.為此設(shè)計了【歸類探
2025-06-30 03:18
【摘要】 勾股定理的逆定理第1課時 勾股定理的逆定理知識點1知識點2勾股定理的逆定理組線段中,能構(gòu)成直角三角形的是(??C??),3,4,4,6,12,13,6,7△ABC中,∠A,∠B,∠C的對邊分別是a,b,c,三邊長滿足b2-a2=c2,則互余的一對角是(
【摘要】勾股定理第1課時勾股定理及拼圖驗證第1課時勾股定理及拼圖驗證知識目標1.通過在方格紙中經(jīng)歷觀察、計算、歸納發(fā)現(xiàn)勾股定理,會用拼圖的方式驗證勾股定理.2.在理解勾股定理的基礎(chǔ)上,會利用勾股定理求圖形的邊長或面積.目標突破目標一勾股定理的驗證第1課時勾股定理及拼圖驗證圖
2025-06-21 12:11
2025-06-29 05:34
【摘要】勾股定理的逆定理第十七章勾股定理導入新課講授新課當堂練習課堂小結(jié)八年級數(shù)學下(RJ)教學課件第1課時勾股定理的逆定理學習目標、定理的概念、關(guān)系及勾股數(shù).(重點),能利用勾股定理的逆定理判斷一個三角形是直角三角形.(難點)導入
2025-06-26 07:02
【摘要】第3課時利用勾股定理作圖與計算,有的表示,因此,數(shù)與數(shù)軸上的點是一一對應(yīng)關(guān)系.有理數(shù)無理數(shù)實2.當直角三角形的兩直角邊長分別為1,1時,斜邊長為2,當兩直角邊長分別為2,1時,斜邊長為,如圖,依此規(guī)律可以畫出表示長為4,5,6?的線段.3
2025-06-25 15:14
【摘要】第十七章勾股定理勾股定理(第2課時)湖北省赤壁市教研室來小靜八年級下冊復(fù)習提問問題1勾股定理的內(nèi)容是什么?問題2勾股定理有什么用途?解析:注意三種語言的表述.請學生畫出圖形、說明已知條件,寫出結(jié)論.解析:勾股定理的運用條件是在直角三角形中,已知兩邊求第三邊.在解直角三角形時
2024-08-16 13:28
【摘要】勾股定理第十七章勾股定理導入新課講授新課當堂練習課堂小結(jié)八年級數(shù)學下(RJ)教學課件第3課時利用勾股定理作圖或計算學習目標1.會運用勾股定理確定數(shù)軸上表示實數(shù)的點及解決網(wǎng)格問題.(重點),并會運用勾股定理解決相應(yīng)的折疊問題.(難點)
2025-06-23 04:03
【摘要】第十七章勾股定理勾股定理第1課時星期日老師帶領(lǐng)初二全體學生去凌峰山風景區(qū)游玩,同學們看到山勢險峻,查看景區(qū)示意圖得知:凌峰山主峰高約為900米,如圖:為了方便游人,此景區(qū)從主峰A處向地面B處架了一條纜車路線,已知山底端C處與地面B處相距1200米,∠ACB=90°,請問纜車路線AB長應(yīng)為多
2025-06-21 06:30