freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

高考數(shù)學第一輪復習教案——導數(shù)-展示頁

2025-04-26 13:10本頁面
  

【正文】 得,(*),.由得,由韋達定理知另一個極值點為(或).(Ⅱ)由(*)式得,即.當時,;當時,.(i)當時,在和內(nèi)是減函數(shù),在內(nèi)是增函數(shù).,由及,解得.(ii)當時,在和內(nèi)是增函數(shù),在內(nèi)是減函數(shù).,恒成立.綜上可知,所求的取值范圍為.例6.求證下列不等式(1) (2) (3) 證明:(1) ∴ 為上 ∴ 恒成立∴ ∴ 在上 ∴ 恒成立(2)原式 令 ∴ ∴ ∴ (3)令 ∴ ∴ 說明:利用導數(shù)證明不等式這一部分內(nèi)容不可忽視,它本質(zhì)是還是考查利用導數(shù)研究函數(shù)的單調(diào)性及最值問題。㈤函數(shù)單調(diào)區(qū)間的合并函數(shù)單調(diào)區(qū)間的合并主要依據(jù)是函數(shù)在單調(diào)遞增,在單調(diào)遞增,又知函數(shù)在處連續(xù),因此在單調(diào)遞增。㈣單調(diào)區(qū)間的求解過程已知 (1)分析 的定義域; (2)求導數(shù) (3)解不等式,解集在定義域內(nèi)的部分為增區(qū)間(4)解不等式,解集在定義域內(nèi)的部分為減區(qū)間我們在應用導數(shù)判斷函數(shù)的單調(diào)性時一定要搞清以下三個關(guān)系,才能準確無誤地判斷函數(shù)的單調(diào)性。當函數(shù)在某個區(qū)間內(nèi)恒有,則為常數(shù),函數(shù)不具有單調(diào)性。㈢與為增函數(shù)的關(guān)系。若將的根作為分界點,因為規(guī)定,即摳去了分界點,此時為增函數(shù),就一定有。如函數(shù)在上單調(diào)遞增,但,∴是為增函數(shù)的充分不必要條件。6.導數(shù)的幾何意義函數(shù)y=f(x)在點處的導數(shù),就是曲線y=(x)在點處的切線的斜率.由此,可以利用導數(shù)求曲線的切線方程.具體求法分兩步: (1)求出函數(shù)y=f(x)在點處的導數(shù),即曲線y=f(x)在點處的切線的斜率; (2)在已知切點坐標和切線斜率的條件下,求得切線方程為  特別地,如果曲線y=f(x)在點處的切線平行于y軸,這時導數(shù)不存,根據(jù)切線定義,可得切線方程為7. 導數(shù)與函數(shù)的單調(diào)性的關(guān)系㈠與為增函數(shù)的關(guān)系。3.導數(shù)與解析幾何或函數(shù)圖象的混合問題是一種重要類型,也是高考中考察綜合能力的一個方向,應引起注意。在高中階段對于導數(shù)的學習,主要是以下幾個方面:1.導數(shù)的常規(guī)問題:(1)刻畫函數(shù)(比初等方法精確細微);(2)同幾何中切線聯(lián)系(導數(shù)方法可用于研究平面曲線的切線);(3)應用問題(初等方法往往技巧性要求較高,而導數(shù)方法顯得簡便)等關(guān)于次多項式的導數(shù)問題屬于較難類型。掌握復合函數(shù)的求導法則,并會用法則解決一些簡單問題。4.了解復合函數(shù)的概念。高考復習——導數(shù)復習目標1.了解導數(shù)的概念,能利用導數(shù)定義求導數(shù).掌握函數(shù)在一點處的導數(shù)的定義和導數(shù)的幾何意義,理解導函數(shù)的概念.了解曲線的切線的概念.在了解瞬時速度的基礎(chǔ)上抽象出變化率的概念. 2熟記基本導數(shù)公式,掌握兩個函數(shù)四則運算的求導法則和復合函數(shù)的求導
點擊復制文檔內(nèi)容
教學教案相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1