【摘要】WORD資料可編輯第四講圓錐曲線中的定點(diǎn)定值問題一、直線恒過定點(diǎn)問題例1.已知動點(diǎn)在直線上,過點(diǎn)分別作曲線的切線,切點(diǎn)為、,求證:直線恒過一定點(diǎn),并求出該定點(diǎn)的坐標(biāo);解:設(shè),整理得:同理可得:,又
2025-04-02 04:37
【摘要】WORD資料可編輯圓錐曲線中的最值取值范圍問題=l(a0,b0)的左、右焦點(diǎn),P為雙曲線上的一點(diǎn),若,且的三邊長成等差數(shù)列.又一橢圓的中心在原點(diǎn),短軸的一個端點(diǎn)到其右焦點(diǎn)的距離為,雙曲線與該橢圓離心率之積為。(I)求橢圓的方程;(
2025-04-03 00:02
【摘要】圓錐曲線的最值、范圍問題與圓錐曲線有關(guān)的范圍、最值問題,各種題型都有,既有對圓錐曲線的性質(zhì)、曲線與方程關(guān)系的研究,又對最值范圍問題有所青睞,它能綜合應(yīng)用函數(shù)、三角、不等式等有關(guān)知識,緊緊抓住圓錐曲線的定義進(jìn)行轉(zhuǎn)化,充分展現(xiàn)數(shù)形結(jié)合、函數(shù)與方程、化歸轉(zhuǎn)化等數(shù)學(xué)思想在解題中的應(yīng)用,本文從下面幾個方面闡述該類題型的求解方法,以引起讀者注意.一、利用圓錐曲線定義求最值借助圓錐曲線定義將
2025-04-03 00:04
【摘要】.專題14圓錐曲線中的最值和范圍問題★★★高考在考什么【考題回放】1.已知雙曲線(a0,b0)的右焦點(diǎn)為F,若過點(diǎn)F且傾斜角為60°的直線與雙曲線的右支有且只有一個交點(diǎn),則此雙曲線離心率的取值范圍是(C)A.(1,2)B.(1,2)C.
2024-08-09 00:14
【摘要】第1頁共35頁普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書—數(shù)學(xué)[人教版]高三新數(shù)學(xué)第一輪復(fù)習(xí)教案(講座35)—曲線方程及圓錐曲線的綜合問題一.課標(biāo)要求:1.由方程研究曲線,特別是圓錐曲線的幾何性質(zhì)問題常化為等式解決,要加強(qiáng)等價轉(zhuǎn)化思想的訓(xùn)練;2.通過圓錐曲線與方程的學(xué)習(xí),進(jìn)一步體會數(shù)形結(jié)合的思想;3.了解圓錐曲線
2024-08-18 15:29
【摘要】望城一中數(shù)學(xué)教研組嚴(yán)文鴛2022年12月1.教材、考綱分析2.歷年試題分析3.高考命題趨勢分析4.典型例題分析圓錐曲線背景下的最值與定值問題圓錐曲線背景下的最值與定值問題利用“坐標(biāo)法”來研究幾何問題是解析幾何的基本思想。對圓錐曲線背景下的最值與定值問題
2024-08-16 16:32
【摘要】專題30圓錐曲線中的最值問題【考情分析】與圓錐曲線有關(guān)的最值和范圍問題,因其考查的知識容量大、分析能力要求高、區(qū)分度高而成為高考命題者青睞的一個熱點(diǎn)。江蘇高考試題結(jié)構(gòu)平穩(wěn),題量均勻.每份試卷解析幾何基本上是1道小題和1道大題,平均分值19分,實(shí)際情況與理論權(quán)重基本吻合;涉及知識點(diǎn)廣.雖然解析幾何的題量不多,分值僅占總分的13%,但涉及到的知識點(diǎn)分布較廣,覆蓋面較大;注重與其他
2025-04-03 01:53
【摘要】解析幾何中的參數(shù)取值范圍問題例1:選題意圖:利用三角形中的公理構(gòu)建不等式xy設(shè)分別是橢圓的左、右焦點(diǎn),若在直線上存在點(diǎn)P,使線段的中垂線過點(diǎn),求橢圓離心率的取值范圍.解法一:設(shè)P,F(xiàn)1P的中點(diǎn)Q的坐標(biāo)為,則kF1P=,kQF2=.由kF1P·kQF2=-1,得y2=.因?yàn)閥2≥0,但注意b2+2c2≠0,所以2c2-b2>0,
2025-04-03 00:03
【摘要】Q群675260005專供圓錐曲線中的存在、探索性問題一、考情分析圓錐曲線中的存在性問題、探索問題是高考常考題型之一,它是在題設(shè)條件下探索某個數(shù)學(xué)對象(點(diǎn)、線、數(shù)等),解法不一,我們在平時的教學(xué)中對這類題目訓(xùn)練較少,因而學(xué)生遇到這類題目時,往往感到無從下手,本文針對圓錐曲線中這類問題進(jìn)行了探討.二、經(jīng)驗(yàn)分享解決探索性問題的注意事項(xiàng)探索性問題,先假設(shè)存在,推證滿足
【摘要】直線與圓錐曲線綜合問題一.考點(diǎn)分析。⑴直線與圓錐曲線的位置關(guān)系和判定直線與圓錐曲線的位置關(guān)系有三種情況:相交、相切、相離.直線方程是二元一次方程,圓錐曲線方程是二元二次方程,由它們組成的方程組,經(jīng)過消元得到一個一元二次方程,直線和圓錐曲線相交、相切、相離的充分必要條件分別是0??、0??、0??.⑵直線與圓錐曲線相交所得的弦長
2025-01-18 16:02
【摘要】第九章 求曲線(或直線)方程解析幾何求曲線(或直線)的方程一、基礎(chǔ)知識:1、求曲線(或直線)方程的思考方向大體有兩種,一個方向是題目中含幾何意義的條件較多(例如斜率,焦距,半軸長,半徑等),那么可以考慮利用幾何意義求出曲線方程中的要素的值,從而按定義確定方程;另一個方向是
2024-08-09 00:15
【摘要】WORD資料可編輯直線圓錐曲線與向量的綜合問題高考考什么知識要點(diǎn):1.直線與圓錐曲線的公共點(diǎn)的情況(1)沒有公共點(diǎn)方程組無解(2)一個公共點(diǎn)(3)兩個公共點(diǎn)2.連結(jié)圓錐曲線上兩個點(diǎn)的線段稱為圓錐曲線的弦,要能熟練地利用方程的根
2025-04-03 06:30
【摘要】專題 圓錐曲線中的探索性問題1.(2016·課標(biāo)全國乙)在直角坐標(biāo)系xOy中,直線l:y=t(t≠0)交y軸于點(diǎn)M,交拋物線C:y2=2px(p0)于點(diǎn)P,M關(guān)于點(diǎn)P的對稱點(diǎn)為N,連接ON并延長交C于點(diǎn)H.(1)求;(2)除H以外,直線MH與C是否有其他公共點(diǎn)?說明理由.2.(2016·四川)已知橢圓E:+=1(ab&g
【摘要】WORD資料可編輯直線圓錐曲線有關(guān)向量的問題高考考什么知識要點(diǎn):1.直線與圓錐曲線的公共點(diǎn)的情況(1)沒有公共點(diǎn)方程組無解(2)一個公共點(diǎn)(3)兩個公共點(diǎn)2.連結(jié)圓錐曲線上兩個點(diǎn)的線段稱為圓錐曲線的弦,要能熟練地利用方程的根與
2025-04-03 06:29