【摘要】橢圓與雙曲線常見題型歸納一.“曲線方程+直線與圓錐曲線位置關系”的綜合型試題的分類求解,點到兩點的距離之和為4,設點的軌跡為,直線與交于兩點。(Ⅰ)寫出的方程;(Ⅱ)若,求的值。例1.解:(Ⅰ)設P(x,y),由橢圓定義可知,點P的軌跡C是以為焦點,長半軸為2的橢圓.它的短半軸,故曲線C的方程為.(Ⅱ)設,其坐標滿足消去y并整理得,
2024-08-19 17:29
【摘要】......橢圓與雙曲線的必背的經典結論橢圓1.點P處的切線PT平分△PF1F2在點P處的外角.2.PT平分△PF1F2在點P處的外角,則焦點在直線PT上的射影H點的軌跡是以長軸為直徑的圓,除去長軸的兩個端
2025-06-29 08:28
【摘要】......圓錐曲線測試題一、選擇題(共12題,每題5分)1已知橢圓的兩個焦點為、,且,弦AB過點,則△的周長為()(A)10(B)20(C)2(D)2橢圓上的點P到它的左準線的距離是10,
2025-07-03 23:31
【摘要】......圓錐曲線習題——雙曲線1.如果雙曲線=1上一點P到雙曲線右焦點的距離是2,那么點P到y(tǒng)軸的距離是()(A) (B) (C) (D)2.已知雙曲線C∶>0,b>0),以C的右焦點為圓心且與C的漸近線相切的圓的半
2025-07-02 15:22
【摘要】橢圓與雙曲線的對偶性質100條橢圓1.2.標準方程:3.4.點P處的切線PT平分△PF1F2在點P處的外角.5.PT平分△PF1F2在點P處的外角,則焦點在直線PT上的射影H點的軌跡是以長軸為直徑的圓,除去長軸的兩個端點.6.以焦點弦PQ為直徑的圓必與對應準線相離.7.以焦點半徑PF1為直徑的圓必與以長軸為直徑的圓內切.8.設A1、A2為橢圓的左、右
2024-08-19 17:12
【摘要】兩定點F1、F2(|F1F2|=2c)和的距離的等于常數(shù)2a(2a|F1F2|=2c0)的點的軌跡.平面內與1.橢圓的定義2.雙曲線的定義平面內與兩定點F1、F2(|F1F2|=2c)的距離的差的絕對值等于常數(shù)2a(2a|F1F2|=2c0)?的點軌跡
2024-12-06 16:52
【摘要】標準方程? 范圍?|x|≤a,|y|≤b對稱性?關于x軸、y軸成軸對稱;關于原點成中心對稱頂點坐標?(a,0)、(-a,0)、(0,b)、(0,-b)焦點坐標?(c,0)、(-c,0)半軸長?長半軸長為a,短半軸長為b.ab離心率?
2025-07-24 02:40
【摘要】1橢圓、雙曲線、拋物線綜合習題專題學案考點一:圓錐曲線標準方程22412xy?=-1的焦點為頂點,頂點為焦點的橢圓方程為__________________22221xy??有公共焦點,離心率互為倒數(shù)的橢圓方程為__________________22135xykk????表示焦點在x軸上的橢圓,則k的取值范圍是_______
2025-01-18 16:10
【摘要】......橢圓知識點【知識點1】橢圓的概念:在平面內到兩定點F1、F2的距離的和等于常數(shù)(大于|F1F2|)的點的軌跡叫橢圓.這兩定點叫做橢圓的焦點,兩焦點間的距離叫做焦距.當動點設為M時,橢圓即為點集
2025-06-29 08:24
【摘要】橢圓與雙曲線定義的應用2.雙曲線的定義:平面內與兩個定點12,FF的距離的差的絕對值等于常數(shù)(小于12FF)的點的軌跡叫做雙曲線.1.橢圓的定義:平面內到兩個定點12,FF的距離的和等于常數(shù)(大于12FF)的點的軌跡叫橢圓.思考一:(課本54PB組第2題)
2024-11-21 00:53
【摘要】橢圓與雙曲線中點弦斜率公式及其推論尤溪文公高級中學鄭明淮,.定理1(橢圓中點弦的斜率公式):設為橢圓弦(不平行軸)的中點,則有:證明:設,,則有,兩式相減得:整理得:,即,因為是弦的中點,所以,所以定理2(雙曲線中點弦的斜率公式):設為雙曲線弦(不平行軸)的中點,則有證明:設,,則有,兩式相減得:整理得:,即,因為是弦的中點,所以,所以例1、已知橢圓
【摘要】橢圓與雙曲線的對偶性質--(會推導的經典結論)高三數(shù)學備課組雙曲線1.雙曲線(a>0,b>0)的兩個頂點為,,與y軸平行的直線交雙曲線于P1、P2時A1P1與A2P2交點的軌跡方程是.2.過雙曲線(a>0,b>o)上任一點任意作兩條傾斜角互補的直線交雙曲線于B,C兩點,則直線BC有定向且(常數(shù)).3.若P為雙曲線(a>0,b>0)右(或左)支上除頂點外的任一點,F1,
2024-09-01 04:20
【摘要】雙曲線焦點三角形面積公式的應用廣西南寧外國語學校隆光誠(郵政編碼530007)定理F1OF2xPy在雙曲線(>0,>0)中,焦點分別為、,點P是雙曲線上任意一點,,則.證明:記,由雙曲線的第一定義得在△中,由余弦定理得:配方得:即由任意三角形的面積公式得:.同理可證,在雙曲線(>0,>0)
2025-04-26 00:06
【摘要】圓錐曲線:圓、橢圓、拋物線,雙曲線。拋物線及其標準方程二次函數(shù))0(2????acbxaxy的圖象(示意圖)?拋物線xyoxoy同學們生活學習中見過拋物線的實例有哪些?噴泉探照燈的燈面平面內與一個定點F和一條定直線l(l不過點F)的距離相等的點
2024-10-29 18:08
【摘要】橢圓典型例題一、已知橢圓焦點的位置,求橢圓的標準方程。例1:已知橢圓的焦點是F1(0,-1)、F2(0,1),P是橢圓上一點,并且PF1+PF2=2F1F2,求橢圓的標準方程。解:由PF1+PF2=2F1F2=2×2=4,得2a==1,所以b2=3.所以橢圓的標準方程是+=1.2.已知橢圓的兩個焦點為F1(-1,0),F(xiàn)2(1,0),且2a=10,求橢圓的標準方程
2025-04-03 04:50