【摘要】基本不等式【考綱要求】,理解基本不等式的幾何意義,并掌握定理中的不等號(hào)“≥”取等號(hào)的條件是:當(dāng)且僅當(dāng)這兩個(gè)數(shù)相等;(?。┲祮栴}.;能夠解決一些簡(jiǎn)單的實(shí)際問題【知識(shí)網(wǎng)絡(luò)】基本不等式重要不等式最大(?。┲祮栴}基本不等式基本不等式的應(yīng)用【考點(diǎn)梳理】考點(diǎn)一:重要不等式及幾何意義1.重要不等式:如果,那么(當(dāng)且僅當(dāng)時(shí)取等號(hào)“=”).2.基
2024-08-20 04:42
【摘要】課時(shí)作業(yè)76 柯西不等式與排序不等式、數(shù)學(xué)歸納法證明不等式時(shí)間:45分鐘 分值:100分一、填空題(每小題5分,共45分)1.已知實(shí)數(shù)x、y、z滿足x+2y+3z=1,則x2+y2+z2的最小值為________.解析:由(x2+y2+z2)(12+22+32)≥(x+2y+3z)2=1可得,x2+y2+z2≥.答案:2.(2010·廣東東莞)若x+2
2024-09-02 17:02
【摘要】§基本不等式2:2abab??(教學(xué)教案設(shè)計(jì))①各項(xiàng)皆為正數(shù);②和或積為定值;③注意等號(hào)成立的條件.利用基本不等式求最值時(shí),要注意條件已知x,y都是正數(shù),P,S是常數(shù).(1)xy=P?x+y≥2P(當(dāng)且僅當(dāng)x=y時(shí),取“=”號(hào)).(2)x+
2024-08-20 03:53
【摘要】新課標(biāo)數(shù)學(xué)選修4-5柯西不等式教學(xué)題庫(kù)大全一、二維形式的柯西不等式二、二維形式的柯西不等式的變式三、二維形式的柯西不等式的向量形式借用一句革命口號(hào)說:有條件要用;沒有條件,創(chuàng)造條件也要用。比如說吧,對(duì)a^2+b^2+c^2,并不是不等式的形狀,但變成(1/3)*(1^2+1^2+1^2)*(a^2+b^2
2025-04-03 04:42
【摘要】不等式與不等式組一、知識(shí)結(jié)構(gòu)圖二、知識(shí)要點(diǎn)(一、)不等式的概念1、不等式:一般地,用不等符號(hào)(“<”“>”“≤”“≥”)表示大小關(guān)系的式子,叫做不等式,用“≠”表示不等關(guān)系的式子也是不等式。不等號(hào)主要包括:>、<、≥、≤、≠。2、不等式的解:使不等式左右兩邊成立的未知數(shù)的值,叫做不等式的解。3、不等式的解集:一個(gè)含有未知數(shù)的不等式的所有解,組
2025-07-03 19:20
【摘要】柯西不等式?答案:及幾種變式.、b、c、d為實(shí)數(shù),求證證法:(比較法)=….=定理:若a、b、c、d為實(shí)數(shù),則.變式:或或.定理:設(shè),則(當(dāng)且僅當(dāng)時(shí)取等號(hào),假設(shè))變式:.定理:設(shè)是兩個(gè)向量,則.等號(hào)成立?(是零向量,或者共線)練習(xí):已知a、b、c、d為實(shí)數(shù),求證.
2025-04-13 05:05
【摘要】基本不等式說課稿 基本不等式是主要應(yīng)用于求某些函數(shù)的最值及證明的不等式。以下是小編整理的基本不等式說課稿,希望對(duì)大家有幫助! 基本不等式說課稿1尊敬的各位考官大家好,我是今天的X號(hào)考生,今天我說課...
2024-12-07 02:50
【摘要】......《不等式》的說課稿各位領(lǐng)導(dǎo)、老師們大家好:今天我說課的內(nèi)容是北師版數(shù)學(xué)高中教材必修五第三章第一二三節(jié),我將從八個(gè)方面(教材、學(xué)情、教學(xué)模式、教學(xué)設(shè)計(jì)、板書、評(píng)價(jià)、開發(fā)、得失,出示ppt)說我對(duì)此課的思考和
2025-04-26 00:22
【摘要】柯西不等式的證明及應(yīng)用(河西學(xué)院數(shù)學(xué)系01(2)班甘肅張掖734000)摘要:柯西不等式是一個(gè)非常重要的不等式,靈活巧妙的應(yīng)用它,可以使一些較為困難的問題迎刃而解。本文在證明不等式,解三角形相關(guān)問題,求函數(shù)最值,解方程等問題的應(yīng)用方面給出幾個(gè)例子。關(guān)鍵詞:柯西不等式證明應(yīng)用中圖分類號(hào):O178
2025-07-02 14:21
【摘要】武勝中學(xué)高2009級(jí)培優(yōu)講座柯西不等式及應(yīng)用武勝中學(xué)周迎新柯西不等式:設(shè)a1,a2,…an,b1,b2…bn均是實(shí)數(shù),則有(a1b1+a2b2+…+anbn)2≤(a12+a22+…an2)(b12+b22+…bn2)等號(hào)當(dāng)且僅當(dāng)ai=λbi(λ為常數(shù),i=1,,…n)時(shí)取到。注:二維柯西不等式:(一)、柯西不等式的證明柯西不等式有多種證明方法,你能怎么嗎?
2025-07-02 14:32
【摘要】經(jīng)典例題透析類型一:利用柯西不等式求最值 1.求函數(shù)的最大值. 思路點(diǎn)撥:利用不等式解決最值問題,通常設(shè)法在不等式一邊得到一個(gè)常數(shù),并尋找不等式取等號(hào)的條件.這個(gè)函數(shù)的解析式是兩部分的和,若能化為ac+bd的形式就能利用柯西不等式求其最大值.也可以利用導(dǎo)數(shù)求解?! 〗馕觯骸 》ㄒ唬骸咔遥 嗪瘮?shù)的定義域?yàn)?,且, ?dāng)且僅當(dāng)時(shí),等號(hào)
【摘要】......不等式與不等式組一、知識(shí)結(jié)構(gòu)圖二、知識(shí)要點(diǎn)(一、)不等式的概念1、不等式:一般地,用不等符號(hào)(“<”“>”“≤”“≥”)表示大小關(guān)系的式子,叫做不等式,用“≠”表示不等關(guān)系的式子也是不等式。
【摘要】第一篇:基本不等式教案 基本不等式 【教學(xué)目標(biāo)】 1、掌握基本不等式,能正確應(yīng)用基本不等式的方法解決最值問題 2、用易錯(cuò)問題引入要研究的課題,通過實(shí)踐讓同學(xué)對(duì)基本不等式應(yīng)用的二個(gè)條件有進(jìn)一步的...
2024-10-28 11:37
【摘要】柯西不等式教學(xué)設(shè)計(jì)一、教學(xué)目標(biāo):1、知識(shí)目標(biāo):(1)認(rèn)識(shí)二維柯西不等式的兩種形式:代數(shù)形式;向量形式。(2)學(xué)會(huì)二維柯西不等式的兩種證明方法:代數(shù)方法;向量方法。(3)了解一般形式的柯西不等式,并學(xué)會(huì)應(yīng)用及探究其證明過程。2、能力目標(biāo):(1)學(xué)會(huì)運(yùn)用柯西不等式解決一些簡(jiǎn)單問題。(2)學(xué)會(huì)運(yùn)用柯西不等式證明不等式。(3)培養(yǎng)學(xué)生知識(shí)
2025-04-26 04:42
【摘要】I摘要柯西不等式是一個(gè)非常重要的公式,對(duì)于柯西不等式的深入了解對(duì)于我們解決一些問題有非常大的幫助。本文給出了柯西不等式的二維形式、三角形式、向量形式、一般形式、推廣形式、積分形式,對(duì)于柯西不等式的證明本文也給出了多種證明方法包括構(gòu)造二次函數(shù)法、數(shù)學(xué)歸納法、配方法、均值不等式法、向量法、行列式證明法、利用二次型法、利用線性相關(guān)性法,本文
2025-06-15 18:42