【摘要】第十二章 全等三角形楊1.全等三角形對(duì)應(yīng)角所對(duì)的邊是對(duì)應(yīng)邊,兩個(gè)對(duì)應(yīng)角所夾的邊是對(duì)應(yīng)邊.對(duì)應(yīng)邊相等。2.全等三角形對(duì)應(yīng)邊所對(duì)的角是對(duì)應(yīng)角,兩條對(duì)應(yīng)邊所夾的角是對(duì)應(yīng)角.對(duì)應(yīng)角相等。證明三角形全等基本思路: 三角形全等的判定(1)三邊分別相等的兩個(gè)三角形全等,簡寫成邊邊邊或SSS.
2025-06-28 22:48
【摘要】......初二上冊(cè)知識(shí)點(diǎn):三角形復(fù)習(xí)1、三角形的定義:由不在同一直線上的三條線段首尾順次相接組成的圖形叫做三角形._C_B_A三角形有三條邊,三個(gè)內(nèi)角,;相鄰兩邊所組成的角叫做三角形的內(nèi)角;
2025-04-25 12:28
【摘要】........全等三角形:⑴全等形:能夠完全重合的兩個(gè)圖形叫做全等形.⑵全等三角形:能夠完全重合的兩個(gè)三角形叫做全等三角形.理解:①全等三角形形狀與大小完全相等,與位置無關(guān);②一個(gè)三角形經(jīng)過平移、翻折、旋轉(zhuǎn)可以得到它的全等形;③三角形
2025-04-25 23:10
【摘要】全等三角形:⑴全等形:能夠完全重合的兩個(gè)圖形叫做全等形.⑵全等三角形:能夠完全重合的兩個(gè)三角形叫做全等三角形.理解:①全等三角形形狀與大小完全相等,與位置無關(guān);②一個(gè)三角形經(jīng)過平移、翻折、旋轉(zhuǎn)可以得到它的全等形;③三角形全等不因位置發(fā)生變化而改變。.:理解:①長邊對(duì)長邊,短邊對(duì)短邊;最大角對(duì)最大角,最小角對(duì)最小角;②對(duì)應(yīng)角的對(duì)邊為對(duì)應(yīng)邊,對(duì)應(yīng)邊對(duì)的角為對(duì)應(yīng)角
2025-04-25 23:09
【摘要】第一章解三角形(一)解三角形:1、正弦定理:在中,、、分別為角、、的對(duì)邊,,則有(為的外接圓的半徑)2、正弦定理的變形公式:①,,;②,,;③;3、三角形面積公式:.4、余弦定理:在中,有,推論:基礎(chǔ)練習(xí)一選擇題1.在△ABC中,已知2B=A+C,則B=( )A.30°B.45°C.60
2024-08-20 16:33
【摘要】數(shù)學(xué)全等三角形知識(shí)點(diǎn)總結(jié) 數(shù)學(xué)全等三角形知識(shí)點(diǎn)總結(jié) ?。? 將一個(gè)平面圖形F上的每一個(gè)點(diǎn),繞這個(gè)平面內(nèi)一定點(diǎn)旋轉(zhuǎn)同一個(gè)角α,得到圖形F’,圖形的這種變換叫旋轉(zhuǎn)。 : 性質(zhì)...
2024-12-06 23:43
【摘要】全等三角形全章復(fù)習(xí)與鞏固【學(xué)習(xí)目標(biāo)】1.了解全等三角形的概念和性質(zhì),能夠準(zhǔn)確地辨認(rèn)全等三角形中的對(duì)應(yīng)元素;2.探索三角形全等的判定方法,能利用三角形全等進(jìn)行證明,掌握綜合法證明的格式;3.會(huì)作角的平分線,了解角的平分線的性質(zhì),能利用三角形全等證明角的平分線的性質(zhì),會(huì)利用角的平分線的性質(zhì)進(jìn)行證明.【知識(shí)網(wǎng)絡(luò)】【要點(diǎn)梳理】一般三角形直角三角形判
【摘要】范文范例參考全等三角形全章復(fù)習(xí)與鞏固(基礎(chǔ))【學(xué)習(xí)目標(biāo)】1.了解全等三角形的概念和性質(zhì),能夠準(zhǔn)確地辨認(rèn)全等三角形中的對(duì)應(yīng)元素;2.探索三角形全等的判定方法,能利用三角形全等進(jìn)行證明,掌握綜合法證明的格式;3.會(huì)作角的平分線,了解角的平分線的性質(zhì),能利用三角形全等證明角的平分線的性質(zhì),會(huì)利用角的平分線的性質(zhì)進(jìn)行證明.【知識(shí)網(wǎng)絡(luò)】【要點(diǎn)梳理
【摘要】全等三角形一、基本概念1、全等的圖形必須滿足:(1)形狀相同的圖形;(2)大小相等的圖形;即能夠完全重合的兩個(gè)圖形叫全等形。同樣我們把能夠完全重合的兩個(gè)三角形叫做全等三角形。2、全等三角形的性質(zhì)(1)全等三角形對(duì)應(yīng)邊相等;(2)全等三角形對(duì)應(yīng)角相等;3、全等三角形的判定方法(1)三邊對(duì)應(yīng)相等的兩個(gè)三角形全等。(SSS)(2)兩角和它們的
2025-04-02 02:13
【摘要】......全等三角形綜合復(fù)習(xí)切記:“有三個(gè)角對(duì)應(yīng)相等”和“有兩邊及其中一邊的對(duì)角對(duì)應(yīng)相等”的兩個(gè)三角形不一定全等。例1.如圖,四點(diǎn)共線,,,,。求證:。例2.如圖,在中,是∠ABC的平分線,,垂足為。求證:。例
2025-07-02 03:58
【摘要】初三數(shù)學(xué)《相似三角形》知識(shí)提綱(孟老師歸納)一:比例的性質(zhì)及平行線分線段成比例定理(一)相關(guān)概念::兩條線段的比就是兩條線段長度的比在同一長度單位下兩條線段a,b的長度分別為m,n,那么就說這兩條線段的比是,或?qū)懗蒩:b=m:n;其中a叫做比的前項(xiàng),b叫做比的后項(xiàng)2:比例尺=圖上距離/實(shí)際距離3:成比例線段:在四條線段a,b,c,d中,如果其中兩條線段的比等于
2025-04-13 03:44
【摘要】圓中的基本圖形和常見數(shù)學(xué)思想圓一直是初中階段數(shù)學(xué)學(xué)習(xí)的一個(gè)難點(diǎn),因?yàn)閳A中知識(shí)點(diǎn)很多,綜合性也很強(qiáng)。而且中考中圓常常和四邊形,三角形,甚至代數(shù)中的二次函數(shù)結(jié)合起來考察學(xué)生的能力。把圓中涵蓋的知識(shí)點(diǎn)融入到幾個(gè)基本圖形中,并教會(huì)學(xué)生在復(fù)雜的圖形中提煉出基本圖形。另外一定要幫助學(xué)生進(jìn)行解題方法的訓(xùn)練和總結(jié)。讓他們熟悉圓中常用的數(shù)學(xué)方法。歸納了以下幾個(gè)方面的內(nèi)容,概述如
2025-04-26 00:14
【摘要】 全等三角形只是總結(jié)及經(jīng)典例題[知識(shí)要點(diǎn)]一、全等三角形1.判定和性質(zhì)一般三角形直角三角形判定邊角邊(SAS)、角邊角(ASA)角角邊(AAS)、邊邊邊(SSS)具備一般三角形的判定方法斜邊和一條直角邊對(duì)應(yīng)相等(HL)性質(zhì)對(duì)應(yīng)邊相等,對(duì)應(yīng)角相等對(duì)應(yīng)中線相等,對(duì)應(yīng)高相等,對(duì)應(yīng)角平分線相等注:①判定兩個(gè)三角形全等
2025-04-25 22:13
【摘要】......全等三角形專題講解(一)知識(shí)儲(chǔ)備1、全等三角形的概念:(1)能夠重合的兩個(gè)圖形叫做全等形。(2)兩個(gè)三角形是全等形,就說它們是全等三角形
2025-06-28 23:06
【摘要】全等三角形綜合復(fù)習(xí)切記:“有三個(gè)角對(duì)應(yīng)相等”和“有兩邊及其中一邊的對(duì)角對(duì)應(yīng)相等”的兩個(gè)三角形不一定全等。例1.如圖,四點(diǎn)共線,,,,。求證:。例2.如圖,在中,是∠ABC的平分線,,垂足為。求證:。例3.如圖,在中,,。為延長線上一點(diǎn),點(diǎn)在上,,連接和。求證:。例4.如圖,//,//,求證:。例5.如圖,分別是外角和的平分線,它們交于
2025-07-02 18:30