【摘要】直線與雙曲線?ABP,BA12yx)1,1(22中點恰為且使兩點、交于與雙曲線能否作一直線過點???這樣的直線不存在12yx),1,1(P22??)k)(1x(k1y,:不存在顯然不可能方程為存在設(shè)直線解????)k1(kxy???則得代入12yx22??)(03kk
2024-11-21 03:12
【摘要】高二年級數(shù)學(xué)科輔導(dǎo)講義(第講)學(xué)生姓名:授課教師:授課時間:專題雙曲線及其標(biāo)準(zhǔn)方程目標(biāo)掌握雙曲線的定義、焦點、離心率;漸進線等概念重難點雙曲線的定義和標(biāo)準(zhǔn)方程常考點求雙曲線的標(biāo)準(zhǔn)方程;求弦中點的軌跡方程第一部分、基礎(chǔ)知識梳理(1
2025-07-24 03:56
【摘要】標(biāo)準(zhǔn)方程:ace?1、范圍:x≥a或x≤-a;2、對稱性:關(guān)于x軸,y軸,原點對稱;3、頂點:A1(-a,0),A2(a,0),實軸,且;虛軸,且.4、離心率:(e1)a,b,c的幾何意義各是:
2024-11-21 08:10
【摘要】一、知識再現(xiàn)前面我們學(xué)習(xí)了橢圓的簡單的幾何性質(zhì):范圍、對稱性、頂點、離心率.我們來共同回顧一下橢圓x2/a2+y2/b2=1(ab0)幾何性質(zhì)的具體內(nèi)容及其研究方法.12222??byax橢圓
2024-11-24 19:05
【摘要】直線與雙曲線一:直線與雙曲線位置關(guān)系種類XYO種類:相離;相切;相交(兩個交點,一個交點)位置關(guān)系與交點個數(shù)XYOXYO相交:兩個交點相切:一個交點相離:0個交點相交:一個交點總結(jié)兩個交點一個交點
2024-11-21 01:24
2024-11-21 01:25
【摘要】yxoF2MF1(1)雙曲線標(biāo)準(zhǔn)方程中,a0,b0,但a不一定大于b;有別于橢圓中ab.(2)雙曲線標(biāo)準(zhǔn)方程中,如果x2項的系數(shù)是正的,那么焦點在x軸上;如果y2項的系數(shù)是正的,那么焦點在y軸上.有別于橢圓通過比較分母的大小來判定焦點在哪一坐標(biāo)軸上。(3)雙曲線標(biāo)準(zhǔn)方程中a、b、
2024-11-25 11:43
【摘要】雙曲線方程和性質(zhì)應(yīng)用xyoax?或ax??ay??ay?或)0,(a?),0(a?xaby??xbay??ace?)(222bac??其中關(guān)于坐標(biāo)軸和原點都對稱性質(zhì)雙曲線)0,0(12222??
2024-11-21 23:30
【摘要】雙曲線基礎(chǔ)練習(xí)題一、選擇題1.已知a=3,c=5,并且焦點在x軸上,則雙曲線的標(biāo)準(zhǔn)程是()A.B.C.2.已知并且焦點在y軸上,則雙曲線的標(biāo)準(zhǔn)方程是()A.B.C.D.3..雙曲線上P點到左焦點的距離是6,則P到右焦點的距離是()A.12B.14C.16D.
2025-04-04 05:43
【摘要】雙曲線的性質(zhì)(一)莫旗職教中心徐志宏222bac??定義圖象方程焦點的關(guān)系||MF1|-|MF2||=2a(02a|F1F2|)F(±c,0)F(0,±c)122
2024-12-12 11:22
【摘要】雙曲線的性質(zhì)(三)橢圓與直線的位置關(guān)系及判斷方法判斷方法?0(1)聯(lián)立方程組(2)消去一個未知數(shù)(3)復(fù)習(xí):相離相切相交一:直線與雙曲線位置關(guān)系種類XYO種類:相離;相切;相交(0個交點,一個交點,一個交點或兩個交點)位置關(guān)系與交
2024-11-30 07:54
【摘要】雙曲線及其標(biāo)準(zhǔn)方程1.橢圓的定義和等于常數(shù)2a(2a|F1F2|0)的點的軌跡.平面內(nèi)與兩定點F1、F2的距離的1F2F??0,c???0,cXYO??yxM,2.引入問題:差等于常數(shù)的點的軌跡是什么呢?平面內(nèi)與兩定點F1、F2的距離的復(fù)習(xí)雙曲
2024-11-29 19:31
【摘要】雙曲線的性質(zhì)(二)關(guān)于x軸、y軸、原點對稱圖形方程范圍對稱性頂點離心率yxOA2B2A1B1..F1F2yB2A1A2B1xO..F2F1)0(1????babyax2222bybaxa??????
2024-11-29 13:00
【摘要】雙曲線的性質(zhì)(一)祝林華222bac??定義圖象方程焦點的關(guān)系||MF1|-|MF2||=2a(02a|F1F2|)F(±c,0)F(0,±c)12222??bya
2024-08-20 17:23
【摘要】一般地,在直角直角坐標(biāo)系中,如果某曲線C上的點與一個二元方程f(x,y)=0的實數(shù)解建立了如下的關(guān)系:(1)曲線上的點的坐標(biāo)都是這個方程的解;(2)以這個方程的解為坐標(biāo)的點都是曲線上的點.曲線C上的點的坐標(biāo)構(gòu)成集合為A二元方程f(x,y)=0的解集為BBA?AB?那么這個方程叫做曲線的方程;
2024-08-31 02:33