【摘要】高中數(shù)學(xué)立體幾何知識點總結(jié) 數(shù)學(xué)立體幾何知識點 ?。赫莆杖齻€公理及推論,會說明共點、共線、共面問題。 能夠用斜二測法作圖。 ?。浩叫小⑾嘟?、異面的概念; 會求異面直線所成...
2024-12-05 02:12
【摘要】高中數(shù)學(xué)之立體幾何平面的基本性質(zhì)公理1如果一條直線上的兩點在一個平面內(nèi),那么這條直線上所有的點都在這個平面內(nèi).公理2如果兩個平面有一個公共點,那么它們有且只有一條通過這個點的公共直線.公理3經(jīng)過不在同一直線上的三個點,有且只有一個平面.根據(jù)上面的公理,可得以下推論.推論1經(jīng)過一條直線和這條直線外一點,有且只有一個平面.推論2經(jīng)過兩條相交直線,有
2024-08-23 19:31
【摘要】高中數(shù)學(xué)立體幾何知識點歸納總結(jié)一、立體幾何知識點歸納第一章空間幾何體(一)空間幾何體的結(jié)構(gòu)特征(1)多面體——由若干個平面多邊形圍成的幾何體.圍成多面體的各個多邊形叫叫做多面體的面,相鄰兩個面的公共邊叫做多面體的棱,棱與棱的公共點叫做頂點。旋轉(zhuǎn)體——把一個平面圖形繞它所在平面內(nèi)的一條定直線旋轉(zhuǎn)形成的封閉幾何體。其中,這條定直線稱為旋轉(zhuǎn)體的軸。
2025-04-13 05:14
【摘要】立體幾何知識點整理一.直線和平面的三種位置關(guān)系:1.線面平行 2.線面相交 3.線在面內(nèi)二.平行關(guān)系:1.線線平行:方法一:用線面平行實現(xiàn)。方法二:用面面平行實現(xiàn)。方法三:用線面垂直實現(xiàn)。若,則。方法四:用向量方法:若向量和向量共線且l、m不重合,則。2.線面平行:方法一:
2025-04-13 05:05
【摘要】高中課程復(fù)習(xí)專題1高中課程復(fù)習(xí)專題——數(shù)學(xué)立體幾何一空間幾何體㈠空間幾何體的類型1多面體:由若干個平面多邊形圍成的幾何體。圍成多面體的各個多邊形叫做多面體的面,相鄰兩個面的公共邊叫做多面體的棱,棱與棱的公共點叫做多面體的頂點。2旋轉(zhuǎn)體:把一個平面圖形繞它所在的平面內(nèi)的一條定直線旋轉(zhuǎn)形成了封閉幾何體。其中,這條直線稱為旋轉(zhuǎn)
2024-12-29 02:36
【摘要】北師大版高中數(shù)學(xué)選修2-1第二章《空間向量與立體幾何》扶風(fēng)縣法門高中姚連省第一課時平面向量知識復(fù)習(xí)一、教學(xué)目標(biāo):復(fù)習(xí)平面向量的基礎(chǔ)知識,為學(xué)習(xí)空間向量作準(zhǔn)備二、教學(xué)重點:平面向量的基礎(chǔ)知識。教學(xué)難點:運用向量知識解決具體問題三、教學(xué)方法:探究歸納,講練結(jié)合四、教學(xué)過程(一)、基本概念
2024-12-20 09:07
【摘要】高中數(shù)學(xué)《必修2》知識點版權(quán)所有王子安第一章空間幾何體一、常見幾何體的定義能說出棱柱、棱錐、棱臺、圓柱、圓錐、圓臺、球的定義和性質(zhì)。二、常見幾何體的面積、體積公式1.圓柱:側(cè)面積(其中是底面周長,是底面半徑,是圓柱的母線,也是
2025-04-13 05:10
【摘要】空間向量與立體幾何知方法總結(jié)一.知識要點。1.空間向量的概念:在空間,我們把具有大小和方向的量叫做向量。注:(1)向量一般用有向線段表示同向等長的有向線段表示同一或相等的向量。(2)向量具有平移不變性2.空間向量的運算。定義:與平面向量運算一樣,空間向量的加法、減法與數(shù)乘運算如下(如圖)。;;運算律:⑴加法交換律:⑵加法結(jié)合律:
2025-07-02 03:59
【摘要】空間向量與立體幾何經(jīng)典題型與答案1已知四棱錐的底面為直角梯形,,底面,且,,是的中點(Ⅰ)證明:面面;(Ⅱ)求與所成的角;(Ⅲ)求面與面所成二面角的大小證明:以為坐標(biāo)原點長為單位長度,如圖建立空間直角坐標(biāo)系,則各點坐標(biāo)為(Ⅰ)證明:因由題設(shè)知,且與是平面內(nèi)的兩條相交直線,由此得面又在面上,故面⊥面(Ⅱ)解:因(Ⅲ)解:在
2025-06-27 13:50
【摘要】一對一授課教案學(xué)員姓名:年級:所授科目:上課時間:年月日時分至?xí)r分共小時老師簽名學(xué)生簽名教學(xué)主題空間向量與立體幾何上次作業(yè)檢查本次上課表現(xiàn)本
2025-07-02 04:23
【摘要】(一)教學(xué)要求:了解共線或平行向量的概念,掌握表示方法;理解共線向量定理及其推論;掌握空間直線的向量參數(shù)方程;會運用上述知識解決立體幾何中有關(guān)的簡單問題.教學(xué)重點:空間直線、平面的向量參數(shù)方程及線段中點的向量公式.教學(xué)過程:一、復(fù)習(xí)引入1.回顧平面向量向量知識:平行向量或共線向量?怎樣判定向量與非零向量是否共線?方向相同或者相反的非零向量叫做平行向量.由于任何一組平行向
2025-06-16 23:19
【摘要】第一章立體幾何初步特殊幾何體表面積公式(c為底面周長,h為高,為斜高,l為母線)柱體、錐體、臺體的體積公式(4)球體的表面積和體積公式:V=;S=第二章直線與平面的位置關(guān)系、直線、平面之間的位置關(guān)系1平面含義:平面是無限延展的2三個公理:(1)公理1:如果一
2025-04-13 05:11
【摘要】空間向量練習(xí)題1.如圖所示,四棱錐P-ABCD的底面ABCD是邊長為1的菱形,∠BCD=60°,E是CD的中點,PA⊥底面ABCD,PA=2.(Ⅰ)證明:平面PBE⊥平面PAB;(Ⅱ)求平面PAD和平面PBE所成二面角(銳角)的大小.如圖所示,以A為原點,坐標(biāo)分別是A(0,0,0),B(1,0,0),P(0,0,2),(Ⅰ)證明因為,
2025-07-06 22:52
【摘要】數(shù)學(xué)選修2-1第一章:命題與邏輯結(jié)構(gòu)知識點:1、命題:用語言、符號或式子表達的,可以判斷真假的陳述句.真命題::判斷為假的語句.2、“若,則”形式的命題中的稱為命題的條件,稱為命題的結(jié)論.3、對于兩個命題,如果一個命題的條件和結(jié)論分別是另一個命題的結(jié)論和條件,,另一個稱為原命題的逆命題。若原命題為“若,則”,它的逆命題為“若,則”.4、對于兩個命題,如果一個命題的
2025-04-13 05:16
【摘要】空間“角度”問題法門高中姚連省一、復(fù)習(xí)引入用空間向量解決立體幾何問題的“三步曲”。(1)建立立體圖形與空間向量的聯(lián)系,用空間向量表示問題中涉及的點、直線、平面,把立體幾何問題轉(zhuǎn)化為向量問題;(2)通過向量運算,研究點、直線、平面之間的位置關(guān)系以及它們之間距離和夾角等問題;(3)把向量的運算結(jié)果“翻譯”成相應(yīng)的幾何
2024-11-30 13:29