【摘要】等差數(shù)列性質總結:(d為常數(shù))();2.等差數(shù)列通項公式:,首項:,公差:d,末項:推廣:.從而;3.等差中項(1)如果,,成等差數(shù)列,那么叫做與的等差中項.即:或(2)等差中項:數(shù)列是等差數(shù)列4.等差數(shù)列的前n項和公式:(其中A、B是常數(shù),所以當d≠0時,Sn是關于n的二次式且常數(shù)項為0)特別地,當項數(shù)
2025-07-09 04:17
【摘要】§等差數(shù)列一.課程目標;;,并能用等差數(shù)列的有關知識解決相應的問題;.二.知識梳理如果一個數(shù)列從第2項起,每一項與它的前一項的差等于同一個常數(shù),那么這個數(shù)列就叫做等差數(shù)列,這個常數(shù)叫做等差數(shù)列的公差,公差通常用字母d表示.數(shù)學語言表達式:an+1-an=d(n∈N*,d為常數(shù)),或an-an-1=d(n≥2,d為常數(shù)).2.
2025-04-03 06:56
【摘要】等差數(shù)列、等比數(shù)列課時考點4高三數(shù)學備課組考試內容:數(shù)列.等差數(shù)列及其通項公式.等差數(shù)列前n項和公式.等比數(shù)列及其通項公式.等比數(shù)列前n項和公式.考試要求:(1)理解數(shù)列的概念,了解數(shù)列通項公式的意義.了解遞推公式是給出數(shù)列的一種方法,并能根據(jù)遞推公式寫出數(shù)列的前幾項.(2)理解等差數(shù)列的概念,
2025-08-03 15:40
【摘要】一、等差等比數(shù)列基礎知識點(一)知識歸納:1.概念與公式:①等差數(shù)列:1°.定義:若數(shù)列稱等差數(shù)列;2°.通項公式:3°.前n項和公式:公式:②等比數(shù)列:1°.定義若數(shù)列(常數(shù)),則稱等比數(shù)列;2°.通項公式:3°.前n項和公式:當q=1時2.簡單性質:①首尾項性質:設數(shù)列1°.若是等差
2025-07-04 02:06
【摘要】1等差數(shù)列求和公式:(1)Sn=n(a1+an)/2(2)Sn=na1+n(n-1)d/22等比數(shù)列求和公式:(1)Sn=1-qa1(1-qn)q≠1q≠1(2)Sn=1-qa1-anq當q=1時,Sn=na1練習:求和1.1+2+3+……+n答案:Sn=n
2025-05-24 17:19
【摘要】練習:設正項數(shù)列{an}的前n項和為Sn,且存在正數(shù)t,使得對所有正整數(shù)n,t與an的等差中項和t與Sn的等比中項相等.求證:數(shù)列{}為等差數(shù)列,并求{an}的通項公式及前n項和.nS等差數(shù)列與等比數(shù)列的類比????.,,11nnnTnbqbb項的積的前求該數(shù)
2025-05-12 02:44
【摘要】歡迎交流唯一QQ1294383109希望大家互相交流等差數(shù)列、等比數(shù)列一、選擇題1.在等差數(shù)列{an}中,a2=2,a3=4,則a10=()A.12B.14C.16D.18解析:選d,則d=a3-a2=2,因而a10=a2+8d=2+2×
2024-09-03 20:05
【摘要】等差數(shù)列、等比數(shù)列同步練習題等差數(shù)列一、選擇題1、等差數(shù)列-6,-1,4,9,……中的第20項為()A、89B、-101C、101D、-892、等差數(shù)列{an}中,a15=33,a45=153,則217是這個數(shù)列的()A、第60項B、第61項C、第62項D、不在這個數(shù)列中3、在-9與3之間插入n個數(shù),使這n+2個
【摘要】第19講等差數(shù)列與等比數(shù)列綜合運用一、等比數(shù)列與等差數(shù)列的概念分析等差數(shù)列等比數(shù)列定義差商通項公式結構相似,性質類似,不同地方1(1)naand???(和)11nnaaq???(積)不同點項沒有限制項必須非零聯(lián)系⑴正項等比數(shù)列
2024-11-22 07:28
【摘要】家庭作業(yè)等比數(shù)列練習題(含答案)一、選擇題1.(2009年廣東卷文)已知等比數(shù)列的公比為正數(shù),且·=2,=1,則=A.B.C.【答案】B【
2025-07-04 05:40
【摘要】第4課時等差、等比數(shù)列的應用?要點·疑點·考點?課前熱身?能力·思維·方法?延伸·拓展?誤解分析要點·疑點·考點按復利計算利息的一種儲蓄,本金為a元,每期利率為r,存期為x
2025-05-09 03:31
【摘要】等比數(shù)列的概念與性質練習題,且·=2,=1,則=A.B.C.2.如果成等比數(shù)列,那么()A、B、C、D
2025-04-03 06:57
【摘要】?要點·疑點·考點?課前熱身?能力·思維·方法?延伸·拓展?誤解分析第1課時等差數(shù)列與等比數(shù)列要點·疑點·考點(比)數(shù)列的定義如果一個數(shù)列從第二項起,每一項與它的前一項的差(
2024-08-31 01:49
【摘要】高二數(shù)學必修五《等比數(shù)列》專項練習題一、選擇題:1.{an}是等比數(shù)列,下面四個命題中真命題的個數(shù)為 ()①{an2}也是等比數(shù)列 ②{can}(c≠0)也是等比數(shù)列③{}也是等比數(shù)列 ④{lnan}也是等比數(shù)列A.4 B.3 C.2 D.12.等比數(shù)列{an}中,已知a9=-2,則此數(shù)列前17項之積為 ()A.
2025-04-13 05:17
【摘要】等差、等比數(shù)列的求和公式一、考綱要求:掌握等差的求和公式、等比數(shù)列的求和公式.二、教學目標:1、掌握等差數(shù)列前n項和公式及其推導過程2、掌握等比數(shù)列前n項和公式及其推導過程3、能熟練利用公式解決相關問題三、重點難點掌握公式的推導方法和公式的應用教學過程:知識梳理:1.(1)等差數(shù)列的前項和(倒序相加法):公式1:公式2:;(2)若數(shù)
2025-06-16 21:56