【摘要】1.立體幾何初步(1)空間幾何體①認(rèn)識柱、錐、臺、球及其簡單組合體的結(jié)構(gòu)特征,并能運(yùn)用這些特征描述現(xiàn)實(shí)生活中簡單物體的結(jié)構(gòu).②能畫出簡單空間圖形(長方體、球、圓柱、圓錐、棱柱等的簡易組合)的三視圖,能識別上述的三視圖所表示的立體模型,會(huì)用斜二測法畫出它們的直觀圖.③會(huì)用平行投影與中心
2025-06-25 12:13
【摘要】第三章空間向量與立體幾何人教A版數(shù)學(xué)第三章空間向量與立體幾何人教A版數(shù)學(xué)第三章空間向量與立體幾何人教A版數(shù)學(xué)1.知識與技能掌握空間向量的數(shù)乘運(yùn)算.理解共線向量,直線的方向向量和共面向量.2.過程與方法
2024-10-25 20:16
【摘要】第2講空間幾何體的表面積與體積【2020年高考會(huì)這樣考】考查柱、錐、臺、球的體積和表面積,由原來的簡單公式套用漸漸變?yōu)榕c三視圖及柱、錐與球的接切問題相結(jié)合,難度有所增大.【復(fù)習(xí)指導(dǎo)】本講復(fù)習(xí)時(shí),熟記棱柱、棱錐、圓柱、圓錐的表面積和體積公式,運(yùn)用這些公式解決一些簡單的問題.基礎(chǔ)梳理1.柱、錐、臺和球的側(cè)面積和體積面
2024-09-12 01:40
【摘要】空間向量的引入為代數(shù)方法處理立體幾何問題提供了一種重要的工具和方法,解題時(shí),可用定量的計(jì)算代替定性的分析,從而回避了一些嚴(yán)謹(jǐn)?shù)耐评碚撟C。求空間角與距離是立體幾何的一類重要的問題,也是高考的熱點(diǎn)之一。本節(jié)課主要是討論怎么樣用向量的辦法解決空間角與距離的問題。建立空間直角坐標(biāo)系,解立體幾何題1122330???abab
2024-11-21 01:53
【摘要】立體幾何空間直線解答題空間直線解答題1、在空間四邊形ABCD中,各邊長和對角線長均為a,點(diǎn)E、F分別是BD、AC的中點(diǎn),求異面直線AE和BF所成的角.2、如圖,空間四邊形ABCD中,AB=AD=2,BC=DC=1,AD和
2024-11-23 13:18
【摘要】利用空間向量解決立體幾何問題數(shù)學(xué)專題二學(xué)習(xí)提綱二、立體幾何問題的類型及解法1、判斷直線、平面間的位置關(guān)系;(1)直線與直線的位置關(guān)系;(2)直線與平面的位置關(guān)系;(3)平面與平面的位置關(guān)系;2、求解空間中的角度;3、求解空間中的距離。1、直線的方向向量;2、平面的法向量。
2024-12-04 22:52
【摘要】空間向量坐標(biāo)法---解決立體幾何問題一.建立恰當(dāng)?shù)目臻g直角坐標(biāo)系,能求點(diǎn)的坐標(biāo);1、三條直線交于一點(diǎn)且兩兩垂直;方便求出各點(diǎn)的坐標(biāo)。2、如何求出點(diǎn)的坐標(biāo):先求線段的長度(特別是軸上線段):由已知條件可全部求出來;若不能,則可先設(shè)出來。(1)軸上的點(diǎn)--------X軸--(a,0,0),y軸--(0,b,0),z軸--(0,0,c)(2)三個(gè)坐標(biāo)面上的點(diǎn)-
2025-04-03 06:42
【摘要】立體幾何專題:空間角和距離的計(jì)算一線線角1.直三棱柱A1B1C1-ABC,∠BCA=900,點(diǎn)D1,F(xiàn)1分別是A1B1和A1C1的中點(diǎn),若BC=CA=CC1,求BD1與AF1所成角的余弦值。2.在四棱錐P-ABCD中,底面ABCD是直角梯形,∠BAD=900,AD∥BC,AB=BC=a,AD=2a,且PA⊥面ABCD,PD與底面成300角,(1)若AE⊥PD,E為垂足,求證:B
2025-04-13 04:20
【摘要】向量代數(shù)空間解析幾何定義:既有大小又有方向的量稱為向量.相等向量、負(fù)向量、向徑.零向量、向量的模單位向量、向量代數(shù)(2)向量的分解式:},,{zyxaaaa??.,,,,軸上的投影分別為向量在其中zyxaaazyxkajaiaazyx??????
2024-10-10 17:17
【摘要】第一篇:立體幾何證明問題 證明問題 ,E、F分別是長方體邊形 .-的棱A、C的中點(diǎn),求證:四邊形是平行四 ,ABCD為正方形,SA⊥平面ABCD,過點(diǎn)A且垂直于SC的平面分別交SB、SC、SD...
2024-10-14 10:12
【摘要】立體幾何體積問題1、在如圖所示的五面體中,四邊形為菱形,且,平面,,為中點(diǎn).(1)求證平面;(2)若平面平面,求到平面的距離.【答案】(1)見解析;(2)試題解析(2)由(1)得平面,所以到平面的距離等于到平面的距離.取的中點(diǎn),連接,因?yàn)樗倪呅螢榱庑?,且,,所以,,因?yàn)槠矫嫫矫?,平面平面,所以平面,,因?yàn)?,所以,學(xué)
2025-04-03 06:43
【摘要】歡迎交流唯一QQ1294383109希望大家互相交流空間向量與立體幾何一、選擇題1.若不同直線l1,l2的方向向量分別為μ,v,則下列直線l1,l2中既不平行也不垂直的是()A.μ=(1,2,-1),v=(0,2,4)B.μ=(3,0,-1),v=(0,0,2)C.μ=(0,2,-3)
2024-09-03 17:46
【摘要】專題:空間角一、基礎(chǔ)梳理(1)異面直線所成的角的范圍:。(2)異面直線垂直:如果兩條異面直線所成的角是直角,則叫兩條異面直線垂直。兩條異面直線垂直,記作。(3)求異面直線所成的角的方法:(1)通過平移,在一條直線上(或空間)找一點(diǎn),過該點(diǎn)作另一(或兩條)直線的平行線;(2)找出與一條直線平行且與另一條相交的直線,那么這兩條相交直線所成的角即為所求。平移技巧
2025-04-26 07:49
【摘要】空間立體幾何考試范圍:xxx;考試時(shí)間:100分鐘;命題人:xxx注意事項(xiàng):1.答題前填寫好自己的姓名、班級、考號等信息2.請將答案正確填寫在答題卡上第I卷(選擇題)請點(diǎn)擊修改第I卷的文字說明評卷人得分一、選擇題(題型注釋)1.如圖,已知球O是棱長為1的正方體ABCB-A1B1C1D1的內(nèi)切球,則平面ACD1截球O的截面面積為()
【摘要】用空間向量解立體幾何題型與方法一.平行垂直問題基礎(chǔ)知識直線l的方向向量為a=(a1,b1,c1).平面α,β的法向量u=(a3,b3,c3),v=(a4,b4,c4)(1)線面平行:l∥α?a⊥u?a·u=0?a1a3+b1b3+c1c3=0(2)線面垂直:l⊥α?a∥u?a=ku?a1=ka3,b1=kb3,c1=kc3(3)面面平行:α∥β?u∥v?u=kv?a
2025-08-02 22:36