【摘要】....橢圓經(jīng)典題型一、選擇題:(本大題共12小題,每小題5分,共60分,在每小題給出的四個選項中有只有一項是符合題目要求的.)1.橢圓的焦距是() A.2 B. C. D.2.F1、F2是定點,|F1F2|=6,動點M滿足|MF1|+|MF2|=6,則點M的軌跡是()
2025-04-03 07:11
【摘要】圓錐曲線練習題(文科)一、選擇題(本大題共12小題,每小題5分,共60分)1.已知拋物線的準線方程為x=-7,則拋物線的標準方程為( )A.x2=-28y B.y2=28xC.y2=-28x D.x2=28y2.設P是橢圓+=1上的點.若F1,F(xiàn)2是橢圓的兩個焦點,則|PF1|+|PF2|等于( )A.4B.5C.8
2025-04-03 04:50
【摘要】雙曲線知識點一、雙曲線的定義:1.第一定義:到兩個定點F1與F2的距離之差的絕對值等于定長(<|F1F2|)的點的軌跡((為常數(shù)))這兩個定點叫雙曲線的焦點.要注意兩點:(1)距離之差的絕對值.(2)2a<|F1F2|.當|MF1|-
2025-08-03 00:12
【摘要】八、圓錐曲線:(1)第一定義中要重視“括號”內的限制條件:橢圓中,與兩個定點F,F(xiàn)的距離的和等于常數(shù),且此常數(shù)一定要大于,當常數(shù)等于時,軌跡是線段FF,當常數(shù)小于時,無軌跡;雙曲線中,與兩定點F,F(xiàn)的距離的差的絕對值等于常數(shù),且此常數(shù)一定要小于|FF|,定義中的“絕對值”與<|FF|不可忽視。若=|FF|,則軌跡是以F,F(xiàn)為端點的兩條射線,若﹥|FF|,則軌跡不存在。若去掉定義中的絕
2025-06-25 19:49
【摘要】雙曲線與拋物線復習要點山東省蒼山縣第三中學277700田丞13583915887郵箱sdtiancheng@QQ273500927雙曲線和拋物線是繼橢圓之后圓錐曲線的重要造成部分,在高考中也占有很大的比重。在復習該部分內容時,要從其定義及其幾何性質入手。一、雙曲線與拋物線的定義雙曲線的定義具有“雙向作用”。在其定義=2a(其中2a<,a>0
2025-01-24 07:53
【摘要】橢圓的定義、性質及標準方程1.橢圓的定義:⑴第一定義:平面內與兩個定點的距離之和等于常數(shù)(大于)的點的軌跡叫做橢圓。這兩個定點叫做橢圓的焦點,兩焦點的距離叫做橢圓的焦距。⑵第二定義:動點到定點的距離和它到定直線的距離之比等于常數(shù),則動點的軌跡叫做橢圓。定點是橢圓的焦點,定直線叫做橢圓的準線,常數(shù)叫做橢圓的離心率。說明:①若常數(shù)等于,則動點軌跡是線段。②若常數(shù)小于,則動點
2024-08-25 15:59
【摘要】:★★★★★知能梳理【橢圓】一、橢圓的定義1、橢圓的第一定義:平面內一個動點到兩個定點、的距離之和等于常數(shù),這個動點的軌跡叫橢圓。這兩個定點叫橢圓的焦點,兩焦點的距離叫作橢圓的焦距。注意:若,則動點的軌跡為線段;若,則動點的軌跡無圖形。二、橢圓的方程1、橢圓的標準方程(端點為a、b,焦點為c)(1)當焦點在軸上時,橢圓的標準方程:,其中;(2)當焦點
2025-06-09 08:15
【摘要】橢圓、雙曲線、拋物線相關知識點總結一、橢圓的標準方程及其幾何性質橢圓的定義:我們把平面內與兩個定點的距離的和等于常數(shù)的點的軌跡叫做橢圓。符號語言:將定義中的常數(shù)記為,則:①.當時,點的軌跡是橢圓②.當時,點的軌跡是線段③.當時,點的軌跡不存在標準方程圖形性質焦點坐標,,焦
2025-07-03 23:31
【摘要】知能梳理【橢圓】一、橢圓的定義1、橢圓的第一定義:平面內一個動點到兩個定點、的距離之和等于常數(shù),這個動點的軌跡叫橢圓。這兩個定點叫橢圓的焦點,兩焦點的距離叫作橢圓的焦距。注意:若,則動點的軌跡為線段;若,則動點的軌跡無圖形。二、橢圓的方程1、橢圓的標準方程(端點為a、b,焦點為c)(1)當焦點在軸上時,橢圓的標準方程:,其中;(2)當焦點在軸上
【摘要】1.【2017課標1,理10】已知F為拋物線C:y2=4x的焦點,過F作兩條互相垂直的直線l1,l2,直線l1與C交于A、B兩點,直線l2與C交于D、E兩點,則|AB|+|DE|的最小值為A.16B.14C.12D.10【答案】A2.【2017課標II,理9】若雙曲線C:221xya
2024-12-08 00:16
【摘要】......橢圓和雙曲線綜合練習卷1.設橢圓,雙曲線,(其中)的離心率分別為,則()A.B.C.D.與1大小不確定【答案】,,所以,故選B.2.已知雙曲線的左焦點為,過點作雙曲線的一
2025-07-08 13:59
【摘要】專題五第二講橢圓、雙曲線、拋物線一、選擇題1.(2011·安徽高考)雙曲線2x2-y2=8的實軸長是( )A.2 B.2C.4 D.4解析:雙曲線方程可變?yōu)椋?,所以a2=4,a=2,2a=4.答案:C2.過橢圓+=1(a>b>0)的左焦點F1作x軸的垂線交橢圓于點P,F(xiàn)2為右焦點,若∠F1PF2=60°
2025-01-23 18:39
【摘要】......拋物線練習題一、選擇題1.(2014·重慶高考文科·T8)設分別為雙曲線的左、右焦點,雙曲線上存在一點使得則該雙曲線的離心率為()A.B.C.D.【解題提
2025-04-03 02:27
【摘要】佛山學習前線教育培訓中心拋物線的定義及性質一、拋物線的定義及標準方程拋物線的定義:平面內與一個定點和一條定直線的距離相等的點的軌跡叫做拋物線。定點叫做拋物線的焦點,定直線叫做拋物線的準線。標準方程()()()()圖形焦點
2025-07-03 21:19