【摘要】1第三章解線性方程組的迭代法?Jacobi迭代法?Gauss-Seidel迭代法?迭代法的收斂條件(充要條件,充分條件)bAx?求?迭代法概述2?迭代法概述gMxxbAx????等價線性方程組取初始向量x(0)?Rn,構(gòu)造如下單步定常線性迭代公式),2,1,0(
2024-10-25 21:26
【摘要】第六章線性方程組的解法§引言與預(yù)備知識§高斯消去法§高斯主元素消去法§矩陣的三角分解法§誤差分析§線性方程組的迭代解法§引言與預(yù)備知識(返回)?線性方程組的數(shù)值解法?向量和矩陣(返回)?矩陣的基本運算
2025-03-02 12:44
【摘要】非線性方程(組)求解?非線性方程(組)數(shù)值求解基本原理?多項式求根函數(shù)-roots?非線性方程求解函數(shù)-fzero?非線性方程組求解函數(shù)-fsolve復(fù)習(xí)與練習(xí)按以下要求編寫一個函數(shù)計算的值,其中x0時,y=;x0時,y=2/x
2024-10-22 16:48
【摘要】第五章線性方程組的迭代解法消去法方程組系數(shù)矩陣的分類?低階稠密矩陣(例如,階數(shù)不超過150)(一般用直接法來求解)?大型稀疏矩陣(即矩陣階數(shù)高且零元素較多)(一般用迭代法來求解)線性方程組的數(shù)值解法分類?直接法經(jīng)過有限步算術(shù)運算,可求得方程組精確解的方法。
2025-08-01 10:31
【摘要】§非線性方程組的迭代解法§預(yù)備知識一、一般非線性方程組及其向量表示法11221212(,,,)0(,,,)0()(,,,)0nnnnfxxxfxxxfxxx????????
2025-08-02 07:09
【摘要】數(shù)值分析實驗報告三求解線性方程組的迭代方法和插值法(2學(xué)時)班級專業(yè)信科3姓名梁嘉城學(xué)號201130760314日期一實驗?zāi)康?.掌握求解線性方程組的簡單迭代法;2.掌握求解線性方程組的賽德爾迭代法。3.掌握不等距節(jié)點下的牛頓插值公式以及拉格朗日插值公式。二實驗內(nèi)容1.使用簡單迭代法求解方程組(精度要求為):2.使
2024-09-01 11:15
【摘要】一、消元法解線性方程組二、矩陣的初等變換三、小結(jié)思考題第三章矩陣的初等變換與線性方程組第一節(jié)矩陣的初等變換機動目錄上頁下頁返回結(jié)束本章先討論矩陣的初等變換,建立矩陣的秩的概念,并提出求秩的有效方法.再利用矩陣的秩反過來研究齊次線性方程組有非零解的充
2024-08-16 17:41
【摘要】§高斯消元法解線性方程組一、線性方程組的矩陣表示二、用高斯消元法求解線性方程組三、小結(jié)在第1章的,我們學(xué)習(xí)過用Gramer’法則解形如)1(22112222212111212111???????????????????nnnnnnnnnnbxaxaxabxaxaxa
2024-08-20 18:07
【摘要】1第三章2線性方程組是線性代數(shù)中最重要最基本的內(nèi)容之一,是解決很多實際問題的的有力工具,在科學(xué)技術(shù)和經(jīng)濟管理的許多領(lǐng)域(如物理、化學(xué)、網(wǎng)絡(luò)理論、最優(yōu)化方法和投入產(chǎn)出模型等)中都有廣泛應(yīng)用.第一章介紹的克萊姆法則只適用于求解方程個數(shù)與未知量個數(shù)相同,且系數(shù)行列式非零的線性方程組.本章研究一般線性
2025-05-22 14:25
【摘要】2022/8/181解線性方程組的直接方法2022/8/182第五章解線性方程組的直接方法§引言?解線性方程組的兩類方法:直接法:經(jīng)過有限次運算后可求得方程組精確解的方法(不計舍入誤差)迭代法:從解的某個近似值出發(fā),通過構(gòu)造一個無窮序列去逼近精確解的方法。(一般有限步內(nèi)得不到精確解)20
2025-07-30 10:44
【摘要】1第六節(jié)線性方程組解的結(jié)構(gòu)一、齊次線性方程組解的結(jié)構(gòu)二、非齊次線性方程組解的結(jié)構(gòu)2?2020,HenanPolytechnicUniversity2§6線性方程組解的結(jié)構(gòu)第三章線性方程組所謂解的結(jié)構(gòu)就是解與解之間的關(guān)系。下面我們將證明,雖然在這時有無窮多解但是全部的解都
2024-10-29 12:07
【摘要】泰山學(xué)院信息科學(xué)技術(shù)系DepartmentofInformationScienceandTechnology,TaishanCollege第三章解線性方程組的直接法實際中,存在大量的解線性方程組的問題。很多數(shù)值方法到最后也會涉及到線性方程組的求解問題:如樣條插值的M和m關(guān)系式,曲線擬合的法方程,方程組的Newton迭代
2025-08-01 09:40
【摘要】線性方程組的求解中國青年政治學(xué)院鄭艷霞?使用建議:建議教師具備簡單的MATHMATICA使用知識。?課件使用學(xué)時:4學(xué)時?面向?qū)ο螅何目平?jīng)濟類本科生?目的:掌握線性方程組的知識點學(xué)習(xí)。為民主黨投票為共和黨投票為自由黨投票?????
2024-10-10 12:10
【摘要】線性方程組的解法解線性方程組的迭代法IterativeMethodsforLinearSystemsJacobi迭代和Gauss-Seidel迭代迭代法的矩陣表示MatrixformoftheIterativeMethods線性方程組的解法在計算數(shù)學(xué)中占有極其重要的地位。線性方程組的解法大致分為迭代法與直接法
2024-08-22 11:23
【摘要】???????????????????mnmnmmnnnnbxaxaxabxaxaxabxaxaxa???????????????22112222212111212111形如)(個方程的線性方程組的個未知數(shù)稱為mxxxnn?,,21一.線性方程組,aaaaaaaaa
2024-10-25 18:56