【摘要】1第三章解線性方程組的迭代法?Jacobi迭代法?Gauss-Seidel迭代法?迭代法的收斂條件(充要條件,充分條件)bAx?求?迭代法概述2?迭代法概述gMxxbAx????等價(jià)線性方程組取初始向量x(0)?Rn,構(gòu)造如下單步定常線性迭代公式),2,1,0(
2024-10-25 21:26
【摘要】1第6章解線性方程組的迭代法2迭代法的基本概念Jacobi迭代法與Gauss-Seidel迭代法超松弛迭代法共軛梯度法3迭代法的基本概念考慮線性方程組,bAx?()其中為非奇異矩陣,當(dāng)為低階稠密矩陣時(shí),第5章所討論的選主元消去法是有效
2025-01-28 16:41
【摘要】線性方程組的求解中國(guó)青年政治學(xué)院鄭艷霞?使用建議:建議教師具備簡(jiǎn)單的MATHMATICA使用知識(shí)。?課件使用學(xué)時(shí):4學(xué)時(shí)?面向?qū)ο螅何目平?jīng)濟(jì)類(lèi)本科生?目的:掌握線性方程組的知識(shí)點(diǎn)學(xué)習(xí)。為民主黨投票為共和黨投票為自由黨投票?????
2024-10-10 12:10
【摘要】1分別用矩陣求逆、矩陣除法以及矩陣分解求線性方程的解。2下面是一個(gè)線性病態(tài)方程組:(1)求方程的解。(2)將方程右邊向量元素b3改為[::],再求解,并比較b3的變化和解的相對(duì)變化。(3)計(jì)算系數(shù)矩陣A和條件數(shù)并分析結(jié)論。解:1-1A=[2,3,5;3,7,4;1,-7,1];B=[10,3,5]X=A\B.'
2025-04-02 07:03
【摘要】一、消元法解線性方程組二、矩陣的初等變換三、小結(jié)思考題第三章矩陣的初等變換與線性方程組第一節(jié)矩陣的初等變換機(jī)動(dòng)目錄上頁(yè)下頁(yè)返回結(jié)束本章先討論矩陣的初等變換,建立矩陣的秩的概念,并提出求秩的有效方法.再利用矩陣的秩反過(guò)來(lái)研究齊次線性方程組有非零解的充
2024-08-16 17:41
【摘要】沈陽(yáng)航空航天大學(xué)理學(xué)院本科學(xué)位論文開(kāi)題報(bào)告論文題目:求解稀疏線性方程組的迭代算法專(zhuān)業(yè):信息與計(jì)算科學(xué)學(xué)生姓名:指導(dǎo)教師:報(bào)告時(shí)間:2015年3月18日指導(dǎo)教師意見(jiàn):
2025-01-30 16:54
【摘要】湖北民族學(xué)院理學(xué)院2016屆本科畢業(yè)論文(設(shè)計(jì))線性方程組的求解方法及應(yīng)用學(xué)生姓名:付世輝
2025-04-17 02:05
【摘要】LU分解法求解線性方程組L為下三角,U為單位上三角???????????????????????????????????????????nnnnnnnnnnnnuuuuu
2024-08-10 08:09
【摘要】§高斯消元法解線性方程組一、線性方程組的矩陣表示二、用高斯消元法求解線性方程組三、小結(jié)在第1章的,我們學(xué)習(xí)過(guò)用Gramer’法則解形如)1(22112222212111212111???????????????????nnnnnnnnnnbxaxaxabxaxaxa
2024-08-20 18:07
【摘要】§非線性方程組的迭代解法§預(yù)備知識(shí)一、一般非線性方程組及其向量表示法11221212(,,,)0(,,,)0()(,,,)0nnnnfxxxfxxxfxxx????????
2024-08-08 07:09
【摘要】(2)設(shè)對(duì)稱(chēng)正定陣系數(shù)陣線方程組2、數(shù)學(xué)原理1、平方根法解n階線性方程組Ax=b的choleskly方法也叫做平方根法,這里對(duì)系數(shù)矩陣A是有要求的,需要A是對(duì)稱(chēng)正定矩陣,根據(jù)數(shù)值分析的相關(guān)理論,如果A對(duì)稱(chēng)正定,那么系數(shù)矩陣就可以被分解為的形式,其中L是下三角矩陣,將其代入Ax=b中,可得:進(jìn)行如下分解:那么就可先計(jì)算y,再計(jì)算x,由于L是下三角矩陣,是上三角
2025-04-02 05:00
【摘要】第六章線性方程組的迭代解法§1向量和矩陣的范數(shù)向量的范數(shù)矩陣的范數(shù)§2迭代解法與收斂性迭代解法的構(gòu)造迭代解法的收斂性條件§3常用的三種迭代解法Jacobi迭代法Gauss-Seide
2024-08-05 00:10
【摘要】試驗(yàn)3直接法求解線性方程組實(shí)驗(yàn)內(nèi)容?Guass列主元消去法?Doolittle分解?追趕法試驗(yàn)3解線性方程組的直接法/*DirectMethodforSolvingLinearSystems*/求解bxA???§1高斯消元法/*GaussianElimi
2024-10-28 01:12
【摘要】???????????????????mnmnmmnnnnbxaxaxabxaxaxabxaxaxa???????????????22112222212111212111形如)(個(gè)方程的線性方程組的個(gè)未知數(shù)稱(chēng)為mxxxnn?,,21一.線性方程組,aaaaaaaaa
2024-10-25 18:56
【摘要】第三章線性方程組的解法§2 作業(yè)講評(píng)2§引言§雅可比(Jacobi)迭代法§高斯-塞德?tīng)?Gauss-Seidel)迭代法§超松馳迭代法§迭代法的收斂性§高斯消去法§高斯主元素消去法§3 作業(yè)講評(píng)3§三角分解法§追趕法
2024-09-01 03:33