【正文】
方法或?yàn)V波參數(shù),具有靈活、方便、功能強(qiáng)等特點(diǎn)。噪聲和干擾既有來自測量系統(tǒng)本身 ,也有來自外界周圍環(huán)境干擾。因此,使用一個(gè)低通濾波器進(jìn)行濾波,可以使峰和本底信息都通過濾波器到達(dá)輸出器,而噪聲中的高頻成分被濾波 器抑制,從而提高了平滑后譜中的信號噪聲比,減小了譜數(shù)據(jù)的統(tǒng)計(jì)漲落。 只要選擇恰當(dāng)?shù)臄?shù)字濾波器響應(yīng)函數(shù),就能夠使平滑后的譜既保留了原始譜中的峰和本底的形狀和大小,又得到最佳的信號噪聲比。當(dāng)噪聲的頻率低于和高于信號的頻率時(shí),應(yīng)選用帶通濾波器。根據(jù)噪聲頻率分量的不同,可選用具有不同濾波特性的濾 波器。 數(shù)字濾波技術(shù)由于其運(yùn)算速度快,可方便地改變其濾波特性等特點(diǎn),在解決低頻干擾、 2 隨機(jī)信號的濾波等方面效果明顯優(yōu)于模擬濾波技術(shù)。譜數(shù)據(jù)的多次平滑可以看做是對前一次平滑后的數(shù)據(jù)再進(jìn)行一次濾波。 由 信號分析理論的觀點(diǎn)出發(fā),我們可以把原始譜數(shù)據(jù)看成是噪聲(即譜數(shù)據(jù)中的統(tǒng)計(jì)漲落)和信號(即峰函數(shù)和本底函數(shù))的疊加。它可以是時(shí)不變的或時(shí)變的、因果的或非因果的、線性的或非線性的。 數(shù)字 濾波器理論上可以實(shí)現(xiàn)任何可以用數(shù)學(xué) 算法表示的濾波效果。作為一種 電子濾波器 , 數(shù)字 濾波器與完全工作在模擬信號 域的 模擬濾波器 不同。 濾波器的選用 對譜數(shù)據(jù)進(jìn)行平滑處理通常使用數(shù)字濾波器。 對于重峰或受干擾嚴(yán)重的峰,還必須使用具有重峰分解能力的曲線擬合程序。首先進(jìn)行峰分析,即由能譜數(shù)據(jù)中找到全部有意義的峰,并計(jì)算出扣除本底之后每個(gè)峰的凈面積。 同時(shí),在使用較小的窗口時(shí),對譜數(shù)據(jù)多次重復(fù)地進(jìn)行平滑處理,可 以有效地減小譜數(shù)據(jù)中的統(tǒng)計(jì)漲落。譜數(shù)據(jù)的平滑就是以一定的數(shù)學(xué)方法對譜數(shù)據(jù)進(jìn)行處理,減少譜數(shù)據(jù)中的統(tǒng)計(jì)漲落,但平滑之后的譜曲線應(yīng)盡可能地保留平滑前譜曲線中有意義的特征,峰的形狀和峰的凈面積不應(yīng)產(chǎn)生很大的變化。 其 主要表現(xiàn)為在尋峰過程中丟失弱峰或出現(xiàn)假峰、峰凈面積計(jì)算的誤差加大等等。 Linear interpolation is smooth。 Data smoothing。為了減少能譜測量數(shù)據(jù)的統(tǒng)計(jì)漲落,又保留譜峰的全部重要的特征,以便譜的分析,必須對實(shí)測 γ 能譜原始數(shù)據(jù)進(jìn)行光滑。譜數(shù)據(jù)的漲落使譜數(shù)據(jù)處理產(chǎn)生誤差。各種平滑算法中,以Good— Turing估計(jì)、線性插值平滑、 Katz’ s回退式平滑最為典型和常用。數(shù)字濾波器是指完成信號濾波處理的功能,用有限精度算法實(shí)現(xiàn)的離散時(shí)間線性非時(shí)變系統(tǒng),其輸入是一組(由模擬信號取樣和量化)數(shù)字量,其輸出是經(jīng)過變換的另一組數(shù)字量。 i 基于數(shù)字濾波的譜數(shù)據(jù)的平滑算法的研究與實(shí)現(xiàn) 摘要 : 當(dāng)前正處于數(shù)字信息化時(shí)代,數(shù)字信號處理技術(shù)受到人們的廣泛關(guān)注,其理論及算法隨計(jì)算機(jī)技術(shù)和微電子技術(shù)的發(fā)展得到了飛速的發(fā)展,被廣泛應(yīng)用 語音圖像處理、數(shù)字通訊、譜分析、模式識別、自動控制等領(lǐng)域。數(shù)字濾波器是數(shù)字信號中最重要的組成部分之一,幾乎出現(xiàn)在所有的數(shù)字信號處理系統(tǒng)中。數(shù)據(jù)平滑是統(tǒng)計(jì)語言建模的關(guān)鍵技術(shù), 它不僅可以改進(jìn)語言模型的性能,還可以提高語音識別、文字識別等應(yīng)用領(lǐng)域的系統(tǒng)識別率,不同的數(shù)據(jù)平滑方法之間的對應(yīng)在各種不同規(guī)模的訓(xùn)練集上操作。 由于射線和探測器中固有的統(tǒng)計(jì)漲落、電子學(xué)系統(tǒng)的噪聲影響,譜數(shù)據(jù)有很大的統(tǒng)計(jì)漲落。在 γ 能譜的分析中,如果被分析的核素活度很低,或被分析的是發(fā)射多支 γ 射線核素所輻射的弱分支,或測量時(shí)間太短,那么,由于計(jì)數(shù)的統(tǒng)計(jì)漲落,可能使譜中相鄰道計(jì)數(shù)的分 散度較大,致使譜峰模糊。 關(guān)鍵詞 : 數(shù)字濾波器; 數(shù)據(jù)平滑;語料庫;線性插值平滑; 統(tǒng)計(jì)漲落 ii Research and implementation of spectral data smoothing algorithm based on the digital filtering Abstract:Current is in the digital information age, digital signal processing technology is widespread attention, its theory and algorithm along with the development of the puter technology and microelectronic technology obtained the rapid development and be widely applied in voice and image processing, digital munications, spectrum analysis, pattern recognition, automatic control and other fields. Digital filter is one of the most important part of digital signal, almost appeared in all digital signal processing systems. Filtering processing of digital filter is refers to the plete function, with limited accuracy algorithm of discrete time linear timeinvariant system, its input is a set of (by the analog signal sampling and quantization) digital quantity, its output is another digital quantity after transforming. Data smoothing is the key technology of statistical language modeling, It not only can improve the performance of language modeling, it Can also improve speech recognition and Application areas such as language identification system recognition rate. Different data smoothing method should be at the contrast between the different scale of operation on the training set. A variety of smoothing algorithms, To GoodTuring estimate, linear interpolation smoothing, Katz’s backofftype is most typical and monly used smoothing. In this paper, various methods of data smoothing empirical parison, and discussed the impact of these data smoothing method performance of relevant factors. Due to inherent statistical fluctuation and the electronics system of noise influence in the rays and the probe, Spectral data has a lot of fluctuations. Spectral data fluctuation spectrum data processing error is produced. In gamma energy spectrum analysis, if the analysis of nuclide activity is very low, or is the analysis of the emission of radiation by gamma rays nuclide more weak branches, or the measuring time is too short, so, because of the statistical fluctuation count, may make the adjacent word count in the spectral dispersion larger and lead to the peak fuzzy. In order to reduce the spectrum measurement data of statistical fluctuation, and keep all the important feature of spectral peak to facilitate analysis of the spectral , must be smooth to the measured gamma spectrometry original data. KeyWords: Digital filter。 Corpus。 Statistical fluctuation iii 目 錄 摘要 ....................................................................... i ABSTRACT. .................................................................. i 目錄 ..................................................................... iii 1 緒論 .................................................................... 1 譜數(shù)據(jù)的平滑處理概念 及方法 ..........................................1 濾波器的選用 ........................................................ 1 常用的數(shù)字濾波算法 與選擇原則 ........................................ 3 2 能譜平滑算法的研究 ...................................................... 5 幾種能譜平 滑算法 .................................................... 5 其他算法的基本思想 ..................................................5 算數(shù)滑動平均法基本思想 ..........................................5 重心法基本思想 ..................................................5 傅里葉變換法基本思想 ............................................6 指數(shù)平滑法基本思想 ..............................................6 最小二乘 移動平滑 法 ..................................................7 SavitzkyGolay 濾波 .............................................7 最小二乘移動平滑法基本思想 與方法 ................................8 移動最小二乘法與最小二乘法比較 .................................12 小波變換 方法 .......................................................13 小波 算法 原理 ...................................................13 小波 算法 去噪的基 本方法 .........................................14 連續(xù)小波變換與局部時(shí)域分析 .....................................16 3 能譜平滑算法的實(shí)現(xiàn) .....................................................18 系統(tǒng)的實(shí)現(xiàn) .........................................................18 四種 平滑法 的仿真 ...............................................18 兩種仿真的結(jié)果分析以及比較 .....................................22 譜 平滑的幾個(gè)具體問題 ..........................