freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

(最新)高考數(shù)學(xué)知識(shí)點(diǎn)總結(jié)精華版-展示頁

2024-10-25 19:08本頁面
  

【正文】 逆命題 . ② 一個(gè)命題為真,則它的逆否命題一定為真 . 原命題 ? 逆否命題 . 例:①若 325 ???? baba 或,則 應(yīng)是 真命題 . 解:逆否: a = 2 且 b = 3,則 a+b = 5,成立,所以此命題為真 . ② ,且 21 ?? yx 3??yx . 解:逆否: x + y =3 x = 1 或 y = 2. 21 ??? yx 且 3??yx ,故 3??yx 是 21 ?? yx 且 的既不是充分,又不是必要條件 . ? 小范圍推出大范圍;大范圍推不出小范圍 . 3. 例:若 255 ??? xxx 或, ? . 4. 集合運(yùn)算:交、并、補(bǔ) . { | , }{ | }{ , }A B x x A x BA B x x A x BA x U x A? ? ?? ? ?? ? ?U交: 且并: 或補(bǔ): 且C ( 三)簡易邏輯 命題的定義:可以判斷真假的語句叫做命題。集合 榆林教學(xué)資源網(wǎng) 二、知識(shí)回顧: 1. 基本概念:集合、元素;有限集、無限集;空集、全集;符號(hào)的使用 . 2. 集合的表示法:列舉法、描述法、圖形表示法 . 集合元素的特征:確定性、互異性、無序性 . 集合的性質(zhì): ① 任何一個(gè)集合是它本身的子集,記為 AA? ; ② 空集是任何集合的子集,記為 A?? ; ③ 空集是任何非空集合的真子集; 如果 BA? ,同時(shí) AB? ,那么 A = B. 如果 CACBBA ??? ,那么, . [注 ]: ① Z= {整數(shù) }(√) Z ={全體整數(shù) } (179。) ② 已知集合 S 中 A 的補(bǔ)集是一個(gè)有限集,則集合 A 也是有限集 .(179。 高中數(shù)學(xué)第 二 章 函數(shù) 考試內(nèi)容: 映射、函數(shù)、函數(shù)的單調(diào)性、奇偶性. 反函數(shù).互為反函數(shù)的函數(shù)圖像間的關(guān)系. 指數(shù)概念的擴(kuò)充.有理指數(shù)冪的運(yùn)算性質(zhì).指數(shù) 函數(shù). 對(duì)數(shù).對(duì)數(shù)的運(yùn)算性質(zhì).對(duì)數(shù)函數(shù). 函數(shù)的應(yīng)用. 設(shè)函數(shù) ))(( Axxfy ?? 的值域是 C,根據(jù)這個(gè)函數(shù)中 x,y 的關(guān)系,用 y 把 x表示出,得到 x=? (y). 若對(duì)于 y在 C中的任何一個(gè)值,通過 x=? (y),x在 A中都有唯一的值和它對(duì)應(yīng),那么, x=? (y)就表示 y是自變量, x是自變量y 的函數(shù),這樣的函數(shù) x=? (y) (y?C)叫做函數(shù) ))(( Axxfy ?? 的反函數(shù),記作 )(1 yfx ?? ,習(xí)慣上改寫成 )(1 xfy ?? 7. 奇函數(shù),偶函數(shù): ? 偶函數(shù): )()( xfxf ?? 設(shè)( ba, )為偶函數(shù)上一點(diǎn),則( ba,? )也是圖象上一點(diǎn) . 偶函數(shù)的判定:兩個(gè)條件同時(shí)滿足 ① 定義域一定要關(guān)于 y 軸對(duì)稱,例如: 12??xy 在 )1,1[? 上不是偶函數(shù) . ② 滿足 )()( xfxf ?? ,或 0)()( ??? xfxf ,若 0)( ?xf 時(shí), 1)( )( ??xf xf. ? 奇函數(shù): )()( xfxf ??? 設(shè)( ba, )為奇函數(shù)上一點(diǎn),則( ba??, )也是圖象上一點(diǎn) . 奇函數(shù)的判定:兩個(gè)條件同時(shí)滿足 ① 定義域一定要關(guān)于原點(diǎn)對(duì)稱,例如: 3xy? 在 )1,1[? 上不是奇函數(shù) . ② 滿足 )()( xfxf ??? ,或 0)()( ??? xfxf ,若 0)( ?xf 時(shí), 1)( )( ???xf xf. 高中數(shù)學(xué) 第三章 數(shù)列 考試內(nèi)容: 等差數(shù)列及其通項(xiàng) 公式 前 n 項(xiàng)和公式. 等比數(shù)列及其通項(xiàng)公式.等比數(shù)列前 n 項(xiàng)和公式. ? 看數(shù)列是不是等差數(shù)列有以下三種方法: ① ),2(1 為常數(shù)dndaa nn ??? ? ② 2 11 ?? ?? nnn aaa ( 2?n ) ③ bknan ?? ( kn, 為常數(shù) ). ? 看數(shù)列是不是等比數(shù)列有以下四種方法: ① )0,2(1 ??? ? 且為常數(shù)qnqaa nn ② 112 ?? ?? nnn aaa ( 2?n , 011 ??? nnn aaa )① 注 ① : i. acb? ,是 a、 b、 c 成等比的雙非條件,即 acb? a、 b、 c 等比數(shù)列 . ii. acb? ( ac> 0)→為 a、 b、 c 等比數(shù)列的充分不必要 . iii. acb ?? →為 a、 b、 c 等比數(shù)列的必要不充分 . iv. acb ?? 且 0?ac →為 a、 b、 c 等比數(shù)列 的充要 . 注意:任意兩數(shù) a、 c 不一定有等比中項(xiàng),除非有 ac> 0,則等比中項(xiàng)一定有兩個(gè) . ③ nn cqa ? ( qc, 為非零常數(shù) ). ④ 正數(shù)列 { na }成等比的充要條件是數(shù)列 { nxalog }( 1?x )成等比數(shù)列 . ? 數(shù)列 { na }的前 n 項(xiàng)和 nS 與通項(xiàng) na 的關(guān)系:??? ?? ???? )2()1(111 nss nasannn [注 ]: ① ? ? ? ?danddnaa n ?????? 11 1 ( d 可為零也可不為零→為等差數(shù)列充要條件(即常數(shù)列也是等差數(shù)列)→若 d 不為 0,則是等差數(shù)列充分條件) . ② 等差 { na }前 n 項(xiàng)和 ndandBnAnSn ?????? ??????????? 22 122 → 2d 可以為零也可不為零→為等差的充要條件→若 d 為零,則是等差數(shù)列的充分條件;若 d 不為零,則是等差數(shù)列的充分條件 . ③ 非零 . . 常數(shù)列既可為等比數(shù)列,也可 為等差數(shù)列 .(不是非零,即不可能有等比數(shù)列) 2. ①等差數(shù)列依次每 k 項(xiàng)的和仍成等差數(shù)列,其公差為原公差的 k2 倍..., 232 kkkkk SSSSS ?? ; ②若等差數(shù)列的項(xiàng)數(shù)為 2 ? ???Nnn ,則 ,奇偶 ndSS ??1?? nnaaSS偶奇 ; ③ 若等差數(shù)列的項(xiàng)數(shù)為 ? ???? Nnn 12 ,則 ? ? nn anS 1212 ??? ,且 naSS ?? 偶奇 ,1??nnSS偶奇 得到所求項(xiàng)數(shù)到代入 12 ?? nn . 3. 常用公式:① 1+2+3 ? +n = ? ?21?nn ② ? ?? ?6 121321 2222 ?????? nnnn? : 9, 99, 999, … 110 ??? nna ; 5, 55, 555, … ? ?11095 ??? nna. ? ? ? ? ? ? ? ? ? ? ? ? ? ?? ? 11 11111......111 21 ?? ???????????????? ?? m mmmmmm r rarxrrxraxrxrxrxra 5. 數(shù)列常見的幾種形式: ? nnn qapaa ?? ?? 12 ( p、 q 為二階常數(shù)) ? 用特證根方法求解 . 具體步驟: ① 寫出特征方程 qPxx ??2 ( 2x 對(duì)應(yīng) 2?na , x 對(duì)應(yīng) 1?na ),并設(shè)二根 21,xx ② 若 21 xx?可設(shè) nnn xcxca 2211. ?? ,若 21 xx? 可設(shè) nn xncca 121 )( ?? ; ③ 由初始值 21,aa 確定 21,cc . ? rPaa nn ?? ?1 ( P、 r 為常數(shù)) ? 用 ① 轉(zhuǎn)化等差,等比數(shù)列; ② 逐項(xiàng)選代; ③ 消去常數(shù) n轉(zhuǎn)化為 nnn qaPaa ?? ?? 12 的形式,再用特征根方法求 na ; ④ 121 ??? nn Pcca (公式法), 21,cc由 21,aa 確定 . ① 轉(zhuǎn)化等差,等比: 1)(11 ?????????? ?? P rxxPxPaaxaPxa nnnn. ② 選代法: ?????? ?? rrPaPrPaa nnn )( 21 xPxaP rPP raa nnn ????????? ?? 1111 )(1)1(? rrPaP nn ?????? ?? Pr211 ?. ③ 用特征方程求解: ?????? ?? ?? 相減,rPaa rPaa nn nn 11 1?na 111 1 ??? ??????? nnnnnn PaaPaPaPaa )(. ④ 由選代法推導(dǎo)結(jié)果: PrPP racPcaP racPrc nnn ???????????? ?? 1111 11112121 )(,. 6. 幾種常見的數(shù)列的思想方法: ? 等差數(shù)列的前 n 項(xiàng)和為 nS ,在 0?d 時(shí),有最大值 . 如何確定使 nS 取最大值時(shí)的 n 值,有兩種方法: 一是求使 0,0 1 ??? nn aa ,成立的 n 值;二是由 ndandSn )2(2 12 ???利用二次函數(shù)的性質(zhì)求 n的值 . ? 如果數(shù)列可以看作是一個(gè)等差數(shù)列與一個(gè)等比數(shù)列的對(duì)應(yīng)項(xiàng)乘積,求此數(shù)列前 n 項(xiàng)和可依照等 比數(shù)列前 n 項(xiàng)和的推倒導(dǎo)方法:錯(cuò)位相減求和 . 例如: ,...21)12,...(413,211 nn ?? ? 兩個(gè)等差數(shù)列的相同項(xiàng)亦組成一個(gè)新的等差數(shù)列,此等差數(shù)列的首項(xiàng)就是原兩個(gè)數(shù)列的第一個(gè)相同項(xiàng),公差是兩個(gè)數(shù)列公差 21 dd, 的最小公倍數(shù) . 2. 判斷和證明數(shù)列是等差(等比)數(shù)列常有三種方法: (1)定義法 :對(duì)于 n≥ 2 的任意自然數(shù) ,驗(yàn)證 )(11 ??? nnnn aaaa 為同一常數(shù)。 (3) 中 項(xiàng) 公 式 法 : 驗(yàn)證 212 ?? ?? nnn aaa Nnaaa nnn ?? ?? )( 22 1 都成立。在解 含絕對(duì)值的數(shù)列最值問題時(shí) ,注意轉(zhuǎn)化思想的應(yīng)用。 :適用于???????1nnaac 其中 { na }是各項(xiàng)不為 0 的等差數(shù)列,
點(diǎn)擊復(fù)制文檔內(nèi)容
法律信息相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號(hào)-1