【摘要】勾股定理單元復(fù)習(xí)一、知識(shí)要點(diǎn):1、勾股定理勾股定理:直角三角形兩直角邊的平方和等于斜邊的平方。也就是說(shuō):如果直角三角形的兩直角邊為a、b,斜邊為c,那么a2+b2=c2。公式的變形:a2=c2-b2,b2=c2-a2。2、勾股定理的逆定理如果三角形ABC的三邊長(zhǎng)分別是a,b,c,且滿(mǎn)足a2+b2=c2,那么三角形ABC是直角三角形。這個(gè)定理叫
2025-04-25 23:53
【摘要】勾股定理逆定理鐵山學(xué)校張宏財(cái)?一、教材分析?二、教學(xué)過(guò)程?三、說(shuō)教法、學(xué)法與教學(xué)手段?四、教學(xué)反思一、教材分析?(一)本節(jié)課在教材的地位與作用?本節(jié)課是勾股定理的逆定理。它是在學(xué)過(guò)勾股定理的基礎(chǔ)上進(jìn)行的。教科書(shū)以古埃及人的作圖為出發(fā)點(diǎn),讓學(xué)生畫(huà)出一些兩邊的平方和
2024-12-04 01:51
【摘要】勾股定理復(fù)習(xí)學(xué)習(xí)目標(biāo):,會(huì)用拼圖法驗(yàn)證勾股定理..直角三角形的條件.問(wèn)題導(dǎo)學(xué):?導(dǎo)學(xué)檢測(cè):1〉直角三角形三邊長(zhǎng)為6,8,x,則x=_______.5,12,則三邊上的高的和為_(kāi)___.10或2721138問(wèn)題導(dǎo)學(xué):理嗎?abcab
2024-11-18 13:14
【摘要】勾股定理的應(yīng)用------初三復(fù)習(xí)課第24屆國(guó)際數(shù)學(xué)大會(huì)會(huì)徽ICM2020我國(guó)已故著名數(shù)學(xué)家華羅庚教授建議..讓宇宙飛船帶著兩三個(gè)數(shù)學(xué)圖形飛到宇宙空間,其中一個(gè)是
2024-11-18 19:33
【摘要】勾股定理及其逆定理專(zhuān)題復(fù)習(xí),5,x為邊組成直角三角形,則x應(yīng)滿(mǎn)足()A. B. C. D.圖(3)A10064:3,其差為2㎝,則三角形的周長(zhǎng)是( )㎝ ㎝ ㎝ ㎝(3),正方形A的面積為()A.6B.36C.64D.84.若線段a,b,c組成Rt△,則它們的比為( )A、2∶
【摘要】課題名稱(chēng)勾股定理復(fù)習(xí)科目數(shù)學(xué)學(xué)生、年級(jí)8年級(jí)課時(shí)1教師彭健一、教材內(nèi)容分析勾股定理是初中數(shù)學(xué)中的重要內(nèi)容,它不僅溝通了數(shù)與形之間的聯(lián)系,而且也是解決許多數(shù)學(xué)問(wèn)題和實(shí)際問(wèn)題的有力工具。新課標(biāo)對(duì)這一內(nèi)容明確規(guī)定:會(huì)運(yùn)用勾股定理解單問(wèn)題;會(huì)運(yùn)用勾股定理逆定理判定直角三角形。因此,學(xué)生對(duì)這一內(nèi)容的熟練掌握是至關(guān)重要的。二、學(xué)習(xí)者特征分析
2025-04-25 22:27
【摘要】第一篇:勾股定理復(fù)習(xí) 《勾股定理復(fù)習(xí)》說(shuō)課稿 李小英 一、教學(xué)內(nèi)容與學(xué)情分析 1、本課內(nèi)容在教材、新課標(biāo)中的地位和作用 本節(jié)內(nèi)容是《勾股定理》的復(fù)習(xí)。本章是以“勾股定理——平方根——立方根—...
2024-11-18 23:31
【摘要】勾股定理的逆定理第十七章勾股定理第1課時(shí)一、情境引入?據(jù)說(shuō),幾千年前的古埃及人就已經(jīng)知道,在一根繩子上連續(xù)打上等距離的13個(gè)結(jié),然后,用釘子將第1個(gè)與第13個(gè)結(jié)釘在一起,拉緊繩子,再在第4個(gè)和第8個(gè)結(jié)處各釘上一個(gè)釘子,如圖。這樣圍成的三角形中,最長(zhǎng)邊所對(duì)的角就是直角。知道為什么嗎?也就意味著,如果圍成三
2024-12-19 17:29
【摘要】勾股定理的逆定理人教版數(shù)學(xué)八年級(jí)下冊(cè).重點(diǎn)、互逆定理難點(diǎn)3.能靈活運(yùn)用勾股定理的逆定理解決實(shí)際問(wèn)題.重點(diǎn)學(xué)習(xí)目標(biāo)(1)在Rt△ABC,∠C=90°,a=8,b=15,則c=.(2)在Rt△ABC,∠B=90
2024-08-02 12:59
【摘要】4勾股定理及其逆定理復(fù)習(xí)典型例題1.勾股定理:直角三角形兩直角邊a、b的平方和等于斜邊c的平方。(即:a2+b2=c2)勾股定理的逆定理:如果三角形的三邊長(zhǎng):a、b、c有關(guān)系a2+b2=c2,那么這個(gè)三角形是直角三角形。2.勾股定理與勾股定理逆定理的區(qū)別與聯(lián)系區(qū)別:勾股定理是直角三角形的性質(zhì)定理,而其逆定理是判定定理聯(lián)系:勾股定理與其逆定理的題設(shè)和結(jié)論正好相反
【摘要】勾股定理(1)回憶:我們學(xué)過(guò)直角三角形的哪些性質(zhì)?看一看相傳二五OO年前,有一次畢達(dá)哥拉斯去朋友家作客,發(fā)現(xiàn)朋友家用磚鋪成的地面反映直角三角形三邊的某種數(shù)量關(guān)系,同學(xué)們,我們也來(lái)觀察下面的圖案,看看你能發(fā)現(xiàn)什么?數(shù)學(xué)家畢達(dá)哥拉斯的發(fā)現(xiàn):A
2024-08-02 13:05
【摘要】這就是本屆大會(huì)會(huì)徽的圖案.古希臘著名數(shù)學(xué)家畢達(dá)哥拉斯的發(fā)現(xiàn)ABCA、B、C的面積有什么關(guān)系?直角三角形三邊有什么關(guān)系?SA+SB=SC等腰Rt△,兩直角邊的平方和等于斜邊的平方a2+b2=c2abcBAC圖甲圖乙A的面積B的面積C的面積
2024-08-16 16:45
【摘要】課題:勾股定理一:實(shí)例展示二:講授新課三:定理應(yīng)用四:小結(jié)與練習(xí)小蝸牛走路ABCD蝸牛走了多長(zhǎng)的路?小鳥(niǎo)飛行小鳥(niǎo)飛了多遠(yuǎn)?8米2米8米飛機(jī)的速度有多少?????乙甲北南西東港口AB輪船航
2024-12-04 00:01
【摘要】2勾股定理的應(yīng)用知識(shí)回顧:1勾股定理的條件和結(jié)論分別是什么?2a、b、c分別是直角三角形的三邊,則一定有a2=c2-b2嗎?勾股定理的應(yīng)用根據(jù)勾股定理,在直角三角形中,已知任意兩條邊長(zhǎng),可以求出第三條邊的長(zhǎng)。例1.在Rt?ABC中,∠C=90°
【摘要】BAC圖甲圖乙A的面積B的面積C的面積448SA+SB=SCC圖甲,小方格的邊長(zhǎng)為1.⑴正方形A、B、C的面積各為多少?⑵正方形、、的面積有什么關(guān)系?ABC圖乙,小方格的邊長(zhǎng)為1.⑴正方形A
2025-01-23 10:04