【摘要】(一)高斯消去法的求解過程,可大致分為兩個(gè)階段:首先,把原方程組化為上三角形方程組,稱之為“消去”過程;然后,用逆次序逐一求出三角方程組(原方程組的等價(jià)方程組)的解,并稱之為“回代”過程.,下面分別寫出“消去”和“回代”兩個(gè)過程的計(jì)算步驟.消去過程:第一步:設(shè)a11?0,取
2025-01-28 15:17
【摘要】第二章線性方程組?§1消元法?§2n維向量空間?§3矩陣的秩?§4線性方程組的解§1消元法?一般線性方程組的基本概念?方程組的解?同解方程組?消元法的三個(gè)基本變換?階梯形方程組?非齊次方
2025-01-29 13:15
【摘要】第三章線性方程組的解法§2 作業(yè)講評(píng)2§引言§雅可比(Jacobi)迭代法§高斯-塞德爾(Gauss-Seidel)迭代法§超松馳迭代法§迭代法的收斂性§高斯消去法§高斯主元素消去法§3 作業(yè)講評(píng)3§三角分解法§追趕法
2024-09-01 03:33
【摘要】線性方程組解的結(jié)構(gòu).齊次線性方程組.非齊次線性方程組齊次線性方程組???????????????????000221122221211212111nmnmmnnnnxaxaxaxaxaxaxaxaxa???????
2024-10-23 17:26
【摘要】1線性代數(shù)與空間解析幾何哈工大數(shù)學(xué)系代數(shù)與幾何教研室王寶玲2《線性代數(shù)與解析幾何》序言?學(xué)時(shí)60學(xué)時(shí),4學(xué)分,共15周課?成績(jī)平時(shí):20%,期中:30%,期末:50%.3一、教學(xué)內(nèi)容線性代數(shù)(抽象)—為了解決多變量問
2025-08-10 13:49
【摘要】線性方程組的求解中國(guó)青年政治學(xué)院鄭艷霞?使用建議:建議教師具備簡(jiǎn)單的MATHMATICA使用知識(shí)。?課件使用學(xué)時(shí):4學(xué)時(shí)?面向?qū)ο螅何目平?jīng)濟(jì)類本科生?目的:掌握線性方程組的知識(shí)點(diǎn)學(xué)習(xí)。為民主黨投票為共和黨投票為自由黨投票?????
2024-10-10 12:10
【摘要】第一節(jié)矩陣矩陣概念的引入矩陣的定義小結(jié)第二章矩陣11112211211222221122nnnnnnnnnnaxaxaxbaxaxaxbaxaxaxb???????????
2024-08-20 10:12
【摘要】線性方程組的解法解線性方程組的迭代法IterativeMethodsforLinearSystemsJacobi迭代和Gauss-Seidel迭代迭代法的矩陣表示MatrixformoftheIterativeMethods線性方程組的解法在計(jì)算數(shù)學(xué)中占有極其重要的地位。線性方程組的解法大致分為迭代法與直接法
2024-08-22 11:23
【摘要】第二章線性方程組高斯消元法矩陣的秩線性方程組解的判定線性方程組的解取決于???????????????????nnnnnnnnnnbxaxaxabxaxaxabxaxaxa???????????????2211
2025-08-10 13:03
【摘要】西安電子科技大學(xué)理學(xué)院主講:王衛(wèi)衛(wèi)第七章線性方程組的直接解法/*Directmethodsforthesolutionoflinearsystems*/線性方程組:11112211211222221122nnnnnnnnnnaxaxaxbax
2024-12-17 01:07
【摘要】第三章線性代數(shù)方程組及矩陣特征值預(yù)備知識(shí)直接法迭代法不可解問題病態(tài)問題§一、對(duì)角陣與三角陣1、對(duì)角陣:?diag(A)提取m×n的矩陣A的主對(duì)角線上元素,生成一個(gè)具有min(m,n)個(gè)元素的列向量diag(A,k)提取第
2025-01-28 15:06
【摘要】第四章線性方程組消元法矩陣的秩線性方程組可解的判別法線性方程組的公式解結(jié)式和判別式偉大的數(shù)學(xué)家,諸如阿基米得、牛頓和高斯等,都把理論和應(yīng)用視為同等重要而緊密相關(guān)?!巳R因(KleinF,1849-1925)消元法線性方程組的初等變換矩陣的初等變
2025-07-30 03:58
【摘要】1第三章2線性方程組是線性代數(shù)中最重要最基本的內(nèi)容之一,是解決很多實(shí)際問題的的有力工具,在科學(xué)技術(shù)和經(jīng)濟(jì)管理的許多領(lǐng)域(如物理、化學(xué)、網(wǎng)絡(luò)理論、最優(yōu)化方法和投入產(chǎn)出模型等)中都有廣泛應(yīng)用.第一章介紹的克萊姆法則只適用于求解方程個(gè)數(shù)與未知量個(gè)數(shù)相同,且系數(shù)行列式非零的線性方程組.本章研究一般線性
2025-05-22 14:25
【摘要】第三章線性方程組§1消元法一授課內(nèi)容:§1消元法二教學(xué)目的:理解和掌握線性方程組的初等變換,同解變換,會(huì)用消元法解線性方程組.三教學(xué)重難點(diǎn):用消元法解線性方程組.四教學(xué)過程:所謂的一般線性方程組是指形式為(1)的方程組,其中代表個(gè)未知量,是方程的個(gè)數(shù),(,)稱為方程組的系數(shù),()稱為常數(shù)項(xiàng).所謂
2025-04-26 13:05
【摘要】第六章線性方程組的解法§引言與預(yù)備知識(shí)§高斯消去法§高斯主元素消去法§矩陣的三角分解法§誤差分析§線性方程組的迭代解法§引言與預(yù)備知識(shí)(返回)?線性方程組的數(shù)值解法?向量和矩陣(返回)?矩陣的基本運(yùn)算
2025-03-02 12:44