【摘要】一、利用直角坐標(biāo)系計(jì)算二重積分二、小結(jié)思考題第二節(jié)二重積分的計(jì)算法(1)如果積分區(qū)域?yàn)椋?bxa??).()(21xyx????其中函數(shù)、在區(qū)間上連續(xù).)(1x?)(2x?],[ba一、利用直角坐標(biāo)系(rightanglecoordinatesys
2024-09-11 12:45
【摘要】如果積分區(qū)域?yàn)椋?bxa??).()(21xyx????其中函數(shù)、在區(qū)間上連續(xù).)(1x?)(2x?],[ba一、利用直角坐標(biāo)系計(jì)算二重積分[X-型])(2xy??abD)(1xy??Dba)(2xy??)(1xy??為曲頂
2025-01-27 17:12
【摘要】機(jī)動(dòng)目錄上頁下頁返回結(jié)束高等數(shù)學(xué)A電子教案第二節(jié)一、利用直角坐標(biāo)計(jì)算二重積分二重積分的計(jì)算法二、利用極坐標(biāo)計(jì)算二重積分三、二重積分的換元法第十章機(jī)動(dòng)目錄上頁下頁返回結(jié)束高等數(shù)學(xué)A電子教案xbad]
2025-05-10 18:15
【摘要】1習(xí)題課一、曲線積分的計(jì)算法二、曲面積分的計(jì)算法線面積分的計(jì)算第十章機(jī)動(dòng)目錄上頁下頁返回結(jié)束2一、曲線積分的計(jì)算法1.基本方法曲線積分第一類(對(duì)弧長)第二類(對(duì)坐標(biāo))(1)統(tǒng)一積分變量轉(zhuǎn)化定積分用參數(shù)方程用直
2025-07-30 22:10
【摘要】1.基本方法曲線積分的計(jì)算法曲線積分第一類(對(duì)弧長)第二類(對(duì)坐標(biāo))轉(zhuǎn)化定積分(1)選擇積分變量用參數(shù)方程用直角坐標(biāo)方程用極坐標(biāo)方程(2)確定積分上下限第一類:下小上大第二類:下始上終對(duì)弧長曲線積分的計(jì)算定理注意:特殊情形例1解例2解例3解例4解由對(duì)稱
2025-07-03 21:36
【摘要】165§13-5三重積分的柱坐標(biāo)計(jì)算法與球坐標(biāo)計(jì)算法§13-5三重積分的柱坐標(biāo)計(jì)算法與球坐標(biāo)計(jì)算法當(dāng)積分區(qū)域在直角坐標(biāo)系中向某個(gè)坐標(biāo)平面的垂直投影是圓或圓的一部分時(shí),時(shí)常采用柱坐標(biāo)計(jì)算三重積分。讀者從圖13-26中看出,點(diǎn)的柱坐標(biāo)實(shí)際上是它到坐標(biāo)平面上垂足的平面極坐標(biāo)與點(diǎn)的豎坐標(biāo)的組合。圖13-26
2024-09-05 16:06
【摘要】第七章微積分的數(shù)值計(jì)算方法Romberg算法§Romberg算法§綜合前幾節(jié)的內(nèi)容,我們知道梯形公式,Simpson公式,Cotes公式的代數(shù)精度分別為1次,3次和5次復(fù)化梯形、復(fù)化Simpson、復(fù)化Cotes公式的收斂階分別為2階、4階和6階無論從代數(shù)精度還
2024-09-12 10:54
【摘要】*三、二重積分的換元法第二節(jié)一、利用直角坐標(biāo)計(jì)算二重積分二、利用極坐標(biāo)計(jì)算二重積分機(jī)動(dòng)目錄上頁下頁返回結(jié)束二重積分的計(jì)算法第十章一、利用直角坐標(biāo)計(jì)算二重積分且在D上連續(xù)時(shí),0),(?yxf當(dāng)被積函數(shù)???????bxaxyxD)()(:21
2025-03-02 16:16
【摘要】上頁下頁返回第十章二重積分計(jì)算二重積分的步驟:1.先畫出積分區(qū)域的草圖;3.合理選擇積分的次序;4.確定二次積分上下限———關(guān)鍵既要考慮積分區(qū)域類型,又要看被積函數(shù)的特點(diǎn)——下節(jié)課研究5.計(jì)算兩次定積分—求出結(jié)果2.確定積分區(qū)域的類型;回顧上頁
2024-12-17 03:07
【摘要】§三重積分及其計(jì)算一、三重積分的概念設(shè)),,(zyxf是空間有界閉區(qū)域?上的有界函數(shù),將閉區(qū)域?任意分成n個(gè)小閉區(qū)域1v?,2v?,,?nv?,其中iv?表示第i個(gè)小閉區(qū)域,也表示它的體積,在每個(gè)iv?上任取一點(diǎn)),,(iii???作乘積iiiivf??)
2025-01-28 14:36
【摘要】§二重積分的計(jì)算方法一、利用直角坐標(biāo)計(jì)算二重積分在直角坐標(biāo)系下用平行于坐標(biāo)軸的直線網(wǎng)來劃分區(qū)域D,??????DDdxdyyxfdyxf),(),(dxdyd??xyoD則面積元素為xoabxdxx?.)(??badxxAVRR?xyo?xxyo
2025-01-21 12:17
【摘要】第二節(jié)二重積分的計(jì)算一、二重積分在直角坐標(biāo)系下的計(jì)算二、二重積分在極坐標(biāo)系下的計(jì)算一、二重積分在直角坐標(biāo)系下的計(jì)算二重積分的計(jì)算主要是化為兩次定積分計(jì)算,簡稱為化為二次積分或累次積分.下面從二重積分的幾何意義來引出這種計(jì)算方法.在直角坐標(biāo)系中,如果用平行于兩個(gè)坐標(biāo)軸的兩組直線段,將區(qū)域D分割成n個(gè)小塊
2025-07-29 20:21
【摘要】利用極坐標(biāo)計(jì)算二重積分教學(xué)目的:利用極坐標(biāo)計(jì)算二重積分教學(xué)重點(diǎn):二重積分化為極坐標(biāo)形式教學(xué)難點(diǎn):用極坐標(biāo)表示平面區(qū)域由扇形面積公式可知其中第i個(gè)小區(qū)域的面積為設(shè)?????.sin,cos??ryrx,則AoDi??irr?iirrr???ii??????i???iiiiii
2024-10-28 12:04
【摘要】第二節(jié)二重積分的計(jì)算法教學(xué)目的:熟練掌握二重積分的計(jì)算方法教學(xué)重點(diǎn):利用直角坐標(biāo)和極坐標(biāo)計(jì)算二重積分教學(xué)難點(diǎn):化二重積分為二次積分的定限問題教學(xué)內(nèi)容:利用二重積分的定義來計(jì)算二重積分顯然是不實(shí)際的,二重積分的計(jì)算是通過兩個(gè)定積分的計(jì)算(即二次積分)來實(shí)現(xiàn)的.一、利用直角坐標(biāo)計(jì)算二重積分我們用幾何觀點(diǎn)來討論二重積分的計(jì)算問題.討論中,我們假定;假定積分區(qū)域
2025-04-16 07:56
【摘要】如果積分區(qū)域D為:),()(21xyx????其中函數(shù)、在區(qū)間上連續(xù).)(1x?)(2x?],[ba第二節(jié)二重積分的計(jì)算一、利用直角坐標(biāo)計(jì)算二重積分[X-型區(qū)域])(2xy??abD)(1xy??Dba)(2xy??)(
2024-12-17 01:13