【正文】
和生活問題都可以轉化為數(shù)學中的函數(shù)問題進行探討,進而轉化為求函數(shù)中最大值最小值的問題,而且函數(shù)的最大值最小值與函數(shù)的極值是密不可分的。結合生活實際中的問題,給出系統(tǒng)的解決方案。在極值原理 的理論學習后,如何運用所學知識解決實際問題應該引起我們的重視,從而認識到極值原理在數(shù)學中的重要性以及數(shù)學在實際生活中的必不可少性!通過結合實際問題,讓數(shù)學理論知識進一步運用到實際中,為我們以后能夠更好的在實際生活中應用數(shù)學理論知識提供了典范! 關鍵詞 : 數(shù)學分析;極值原理;函數(shù);實際生活;應用 Mathematical analysis of extreme value principle applied in the practical life Extreme value problems are the most important issues in mathematical research, is the most successful application of classical calculus! not only plays an important role in many practical problems, is also studying the functional State of a feature. In industrial and agricultural production, economic management and accounting, often need to address how to invest capital cost at least, outputs up to, such issues as efficient. In real life, they will have issues such as seeking to maximize profits, material to be used in most. These economic and social problems can be translated into mathematical functions to explore, turn into for maximum value minimum value the function problem, minimum value and the maximum value of the function and the function extreme value go hand in hand. This article uses a secondary school of mathematical analysis based on maximum principle, gives methods for solving extreme value problems. Combined with problems in life, given a system solution. Comprehensive description of applications of extreme value theory in real life. After the maximum principle theory of learning, how to apply the knowledge to solve realworld problems should be brought to our attention, thus recognizing the importance of extreme value theory in mathematics, and mathematics in practice indispensable! by practical problems, further use of mathematical theory to practice, as we will be able to better theoretical knowledge in reallife applications of mathematics provides a model! Keywords: mathematics; the extreme value; function; the actual; application. 目 錄 摘要 ..........................................1 ABSTRACT......................................2 第一章 前言 ...................................4 緒論 .................................................4 研究背景 .............................................4 國內(nèi)外研究現(xiàn)狀 .......................................4 研究目的 .............................................5 研究意義 .............................................5 第二章 概述極值問題 ...........................6 函 數(shù)極值的定義 .......................................6 一元極值與多元極值的關系 .............................6 第三章 一元函數(shù)極值原理在實際生活中的應用 ......7 最大利潤和最小成本問題 ...............................7 稅收額最大問題 .......................................8 工廠廢氣對環(huán)境污染最小問題 ...........................8 第四章 二元函數(shù)極值 原理在實際生活中的應用 ......10 最大利潤問題 ..........................................10 用材最省問題 ..........................................11 合理調控價格問題 ......................................12 第五章 多元函數(shù)極值 原理在實際生活中的應用 ......14 無條件極值的應用 ......................................14 條件極值的應用 ........................................15 第六章 結論 ....................................17 參考文獻 .......................................18 致謝 ...........................................19 第一章 前言 緒論 作為函數(shù)性質的一個重要分支和基本工具,函數(shù)極值 在數(shù)