freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

備戰(zhàn)中考數(shù)學復習二次函數(shù)專項綜合練及答案-展示頁

2025-04-02 00:22本頁面
  

【正文】 y軸上找一點M,使△BDM的周長最小,求出點M的坐標;(3)試探究:在拋物線上是否存在點P,使以點A,P,C為頂點,AC為直角邊的三角形是直角三角形?若存在,請求出符合條件的點P的坐標;若不存在,請說明理由.【答案】(1)拋物線解析式為y=﹣x2+2x+3;直線AC的解析式為y=3x+3;(2)點M的坐標為(0,3);(3)符合條件的點P的坐標為(,)或(,﹣),【解析】分析:(1)設交點式y(tǒng)=a(x+1)(x3),展開得到2a=2,然后求出a即可得到拋物線解析式;再確定C(0,3),然后利用待定系數(shù)法求直線AC的解析式;(2)利用二次函數(shù)的性質(zhì)確定D的坐標為(1,4),作B點關于y軸的對稱點B′,連接DB′交y軸于M,如圖1,則B′(3,0),利用兩點之間線段最短可判斷此時MB+MD的值最小,則此時△BDM的周長最小,然后求出直線DB′的解析式即可得到點M的坐標;(3)過點C作AC的垂線交拋物線于另一點P,如圖2,利用兩直線垂直一次項系數(shù)互為負倒數(shù)設直線PC的解析式為y=x+b,把C點坐標代入求出b得到直線PC的解析式為y=x+3,再解方程組得此時P點坐標;當過點A作AC的垂線交拋物線于另一點P時,利用同樣的方法可求出此時P點坐標.詳解:(1)設拋物線解析式為y=a(x+1)(x﹣3),即y=ax2﹣2ax﹣3a,∴﹣2a=2,解得a=﹣1,∴拋物線解析式為y=﹣x2+2x+3;當x=0時,y=﹣x2+2x+3=3,則C(0,3),設直線AC的解析式為y=px+q,把A(﹣1,0),C(0,3)代入得,解得,∴直線AC的解析式為y=3x+3;(2)∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴頂點D的坐標為(1,4),作B點關于y軸的對稱點B′,連接DB′交y軸于M,如圖1,則B′(﹣3,0),∵MB=MB′,∴MB+MD=MB′+MD=DB′,此時MB+MD的值最小,而BD的值不變,∴此時△BDM的周長最小,易得直線DB′的解析式為y=x+3,當x=0時,y=x+3=3,∴點M的坐標為(0,3);(3)存在.過點C作AC的垂線交拋物線于另一點P,如圖2,∵直線AC的解析式為y=3x+3,∴直線PC的解析式可設為y=﹣x+b,把C(0,3)代入得b=3,∴直線PC的解析式為y=﹣x+3,解方程組,解得或,則此時P點坐標為(,);過點A作AC的垂線交拋物線于另一點P,直線PC的解析式可設為y=﹣x+b,把A(﹣1,0)代入得+b=0,解得b=﹣,∴直線PC的解析式為y=﹣x﹣,解方程組,解得或,則此時P點坐標為(,﹣).綜上所述,符合條件的點P的坐標為(,)或(,﹣).點睛:本題考查了二次函數(shù)的綜合題:熟練掌握二次函數(shù)圖象上點的坐標特征和二次函數(shù)的性質(zhì);會利用待定系數(shù)法求函數(shù)解析式,理解兩直線垂直時一次項系數(shù)的關系,通過解方程組求把兩函數(shù)的交點坐標;理解坐標與圖形性質(zhì),會運用兩點之間線段最短解決最短路徑問題;會運用分類討論的思想解決數(shù)學問題.5.如圖,已知二次函數(shù)的圖象過點O(0,0).A(8,4),與x軸交于另一點B,且對稱軸是直線x=3.(1)求該二次函數(shù)的解析式;(2)若M是OB上的一點,作MN∥AB交OA于N,當△ANM面積最大時,求M的坐標;(3)P是x軸上的點,過P作PQ⊥x軸與拋物線交于Q.過A作AC⊥x軸于C,當以O,P,Q為頂點的三角形與以O,A,C為頂點的三角形相似時,求P點的坐標.【答案】(1);(2)當t=3時,S△AMN有最大值3,此時M點坐標為(3,0);(3)P點坐標為(14,0)或(﹣2,0)或(4,0)或(8,0).【解析】【分析】(1)先利用拋物線的對稱性確定B(6,0),然后設交點式求拋物線解析式;(2)設M(t,0),先其求出直線OA的解析式為直線AB的解析式為y=2x12,直線MN的解析式為y=2x2t,再通過解方程組得N(),接著利用三角形面積公式,利用S△AMN=S△AOMS△NOM得到然后根據(jù)二次函數(shù)的性質(zhì)解決問題;(3)設Q,根據(jù)相似三角形的判定方法,當時,△PQO∽△COA,則;當時,△PQO∽△CAO,則,然后分別解關于m的絕對值方程可得到對應的P點坐標.【詳解】解:(1)∵拋物線過原點,對稱軸是直線x=3,∴B點坐標為(6,0),設拋物線解析式為y=ax(x﹣6),把A(8,4)代入得a?8?2=4,解得a=,∴拋物線解析式為y=x(x﹣6),即y=x2﹣x;(2)設M(t,0),易得直線OA的解析式為y=x,設直線AB的解析式為y=kx+b,把B(6,0),A(8,4)代入得,解得,∴直線AB的解析式為y=2x﹣12,∵MN∥AB,∴設直線MN的解析式為y=2x+n,把M(t,0)代入得2t+n=0,解得n=﹣2t,∴直線MN的解析式為y=2x﹣2t,解方程組得,則,∴S△AMN=S△AOM﹣S△NOM ,當t=3時,S△AMN有最大值3,此時M點坐標為(3,0);(3)設,∵∠OPQ=∠ACO,∴當時,△PQO∽△COA,即,∴PQ=2PO,即,解方程得m1=0(舍去),m2=14,此時P點坐標為(14,0);解方程得m1=0(舍去),m2=﹣2,此時P點坐標為(﹣2,0);∴當時,△PQO∽△CAO,即,∴PQ=PO,即,解方程得m1=0(舍去),m2=8,此時P點坐標為(8,0);解方程得m1=0(舍去),m2=4,此時P點坐標為(4,0);綜上所述,P點坐標為(14,0)或(﹣2,0)或(4,0)或(8,0).【點睛】本題考查了二次函數(shù)的綜合題:熟練掌握二次函數(shù)圖象上點的坐標特征和二次函數(shù)的性質(zhì);會利用待定系數(shù)法求函數(shù)解析式;理解坐標與圖形性質(zhì);靈活運用相似比表示線段之間的關系;會運用分類討論的思想解決數(shù)學問題.6.溫州茶山楊梅名揚中國,某公司經(jīng)營茶山楊梅業(yè)務,以3萬元/噸的價格買入楊梅,包裝后直接銷售,包裝成本為1萬元/噸,它的平均銷售價格y(單位:萬元/噸)與銷售數(shù)量x(2≤x≤10,單位:噸)之間的函數(shù)關系如圖所示.(1)若楊梅的銷售量為6噸時,它的平均銷售價格是每噸多少萬元?(2)當銷售數(shù)量為多少時,該經(jīng)營這批楊梅所獲得的毛利潤(w)最大?最大毛利潤為多少萬元?(毛利潤=銷售總收入﹣進價總成本﹣包裝總費用)(3)經(jīng)過市場調(diào)查發(fā)現(xiàn),楊梅深加工后不包裝直接銷售,平均銷售價格為12萬元/噸.深加工費用y(單位:萬元)與加工數(shù)量x(單位:噸)之間的函數(shù)關系是y=x+3(2≤x≤10).①當該公司買入楊梅多少噸時,采用深加工方式與直接包裝銷售獲得毛利潤一樣?②該公司買入楊梅噸數(shù)在   范圍時,采用深加工方式比直接包裝銷售獲得毛利潤大些?【答案】(1)楊梅的銷售量為6噸時,它的平均銷售價格是每噸10萬元;(2)當x=8時,此時W最大值=40萬元;(3)①該公司買入楊梅3噸;②3<x≤8.【解析】【分析】(1)設其解析式為y=kx+b,由圖象經(jīng)過點(2,12),(8,9)兩點,得方程組,即可得到結論;(2)根據(jù)題意得,w=(y﹣4)x=(﹣x+13﹣4)x=﹣x2+9x,根據(jù)二次函數(shù)的性質(zhì)即可得到結論;(3)①根據(jù)題意列方程,即可得到結論;②根據(jù)題意即可得到結論.【詳解】(1)由圖象可知,y是關于x的一次函數(shù).
點擊復制文檔內(nèi)容
數(shù)學相關推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1