freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

20xx-20xx備戰(zhàn)中考數(shù)學復習二次函數(shù)專項易錯題含詳細答案-展示頁

2025-03-30 22:26本頁面
  

【正文】 【分析】(1)由B(5,0),C(0,5),應用待定系數(shù)法即可求直線BC與拋物線的解析式?!郌坐標(1,2+)或(1,2﹣)③當BF=DF時,m=1,F(xiàn)(1,1),此時B、D、F在同一直線上,不符合題意.綜上,符合條件的點F的坐標(1,)或(1,﹣)或(1,2+)或(1,2﹣).【點睛】考查了二次函數(shù),熟練掌握二次函數(shù)的性質(zhì)是解題的關(guān)鍵.8.如圖,已知拋物線的圖象與x軸的一個交點為B(5,0),另一個交點為A,且與y軸交于點C(0,5)。C:,聯(lián)立:,解得或,∴E(,);(4)∵拋物線的對稱軸:直線x=1,∴設F(1,m),直線BC的解析式:y=﹣x+2;∴D(0,2)∵B(2,0),∴BD=,①當BF=BD時,m=177。H=1,OH=3,∴A39。B,可知△AFB≌△A39?!帱cA與A39。作A39。C解析式,與拋物線解析式聯(lián)立,求得點E坐標;(4)設F(1,m),分三種情況討論:①當BF=BD時,②當DF=BD時,③當BF=DF時,m=1,然后代入即可.【詳解】(1)設拋物線解析式y(tǒng)=a(x﹣1)2﹣1,將B(2,0)代入,0=a(2﹣1)2﹣1,∴a=1,拋物線解析式:y=(x﹣1)2﹣1=x2﹣2x,將B(2,0)代入y=kx+2,0=2k+2,k=﹣1,∴直線BC的解析式:y=﹣x+2;(2)聯(lián)立,解得,∴C(﹣1,3),∵A(1,﹣1),B(2,0),∴AB2=(1﹣2)2+(﹣1﹣0)2=2,AC2=[1﹣(﹣1)]2+(﹣1﹣3)2=20,BC2=[2﹣(﹣1)]2+(0﹣3)2=18,∴AB2+BC2=AC2,∴△ABC是直角三角形;(3)如圖,作∠BCE=∠ACB,與拋物線交于點E,延長AB,與CE的延長線交于點A39。H垂直x軸于點H,設二次函數(shù)對稱軸于x軸交于點G.根據(jù)對稱與三角形全等,求得A39。過A39。又∵△AOQ≌△PQN,∴OQ=QN,∠AOQ=∠PQN,∴∠MOQ=∠HQN,∴△OQM≌△QNH(AAS),∴OM=QH,即x=﹣x2+2x+2+1,解得:x=(負值舍去),當x=時,HN=QM=﹣x2+2x+2=,點M(,0),∴點N坐標為(+,﹣1),即(,﹣1);或(﹣,﹣1),即(1,﹣1);如圖3,同理可得△OQM≌△PNH,∴OM=PH,即x=﹣(﹣x2+2x+2)﹣1,解得:x=﹣1(舍)或x=4,當x=4時,點M的坐標為(4,0),HN=QM=﹣(﹣x2+2x+2)=6,∴點N的坐標為(4+6,﹣1)即(10,﹣1),或(4﹣6,﹣1)即(﹣2,﹣1);綜上點M1(,0)、N1(,﹣1);M2(,0)、N2(1,﹣1);M3(4,0)、N3(10,﹣1);M4(4,0)、N4(﹣2,﹣1).【點睛】本題考查的是二次函數(shù)的綜合題,涉及到的知識有待定系數(shù)法、等邊三角形的性質(zhì)、全等三角形的判定與性質(zhì)等,熟練掌握待定系數(shù)法求函數(shù)解析式、等邊三角形的性質(zhì)、全等三角形的判定與性質(zhì)、運用分類討論思想是解題的關(guān)鍵.6.如圖,拋物線交軸于,兩點,交軸于點C,與過點C且平行于x軸的直線交于另一點,點P是拋物線上一動點.(1)求拋物線解析式及點D的坐標;(2)點在軸上,若以,為頂點的四邊形是平行四邊形,求此時點的坐標;(3)過點作直線CD的垂線,垂足為,若將沿翻折,點的對應點為.是否存在點,使恰好落在軸上?若存在,求出此時點P的坐標;若不存在,說明理由. 【答案】(1);點坐標為; (2)P1(0,2); P2(,2);P3(,2) 。若△PDE為等腰直角三角形,則∠EDP=45176?!郉H∥AO,∵OA=OB=6,∴∠BDH=∠BAO=45176。知若△PDE為等腰直角三角形,則∠EDP=45176。20202021備戰(zhàn)中考數(shù)學復習二次函數(shù)專項易錯題含詳細答案一、二次函數(shù)1.已知:如圖,拋物線y=ax2+bx+c與坐標軸分別交于點A(0,6),B(6,0),C(﹣2,0),點P是線段AB上方拋物線上的一個動點.(1)求拋物線的解析式;(2)當點P運動到什么位置時,△PAB的面積有最大值?(3)過點P作x軸的垂線,交線段AB于點D,再過點P做PE∥x軸交拋物線于點E,連結(jié)DE,請問是否存在點P使△PDE為等腰直角三角形?若存在,求出點P的坐標;若不存在,說明理由.【答案】(1)拋物線解析式為y=﹣x2+2x+6;(2)當t=3時,△PAB的面積有最大值;(3)點P(4,6).【解析】【分析】(1)利用待定系數(shù)法進行求解即可得;(2)作PM⊥OB與點M,交AB于點N,作AG⊥PM,先求出直線AB解析式為y=﹣x+6,設P(t,﹣t2+2t+6),則N(t,﹣t+6),由S△PAB=S△PAN+S△PBN=PN?AG+PN?BM=PN?OB列出關(guān)于t的函數(shù)表達式,利用二次函數(shù)的性質(zhì)求解可得;(3)由PH⊥OB知DH∥AO,據(jù)此由OA=OB=6得∠BDH=∠BAO=45176。結(jié)合∠DPE=90176。從而得出點E與點A重合,求出y=6時x的值即可得出答案.【詳解】(1)∵拋物線過點B(6,0)、C(﹣2,0),∴設拋物線解析式為y=a(x﹣6)(x+2),將點A(0,6)代入,得:﹣12a=6,解得:a=﹣,所以拋物線解析式為y=﹣(x﹣6)(x+2)=﹣x2+2x+6;(2)如圖1,過點P作PM⊥OB與點M,交AB于點N,作AG⊥PM于點G,設直線AB解析式為y=kx+b,將點A(0,6)、B(6,0)代入,得:,解得:,則直線AB解析式為y=﹣x+6,設P(t,﹣t2+2t+6)其中0<t<6,則N(t,﹣t+6),∴PN=PM﹣MN=﹣t2+2t+6﹣(﹣t+6)=﹣t2+2t+6+t﹣6=﹣t2+3t,∴S△PAB=S△PAN+S△PBN=PN?AG+PN?BM=PN?(AG+BM)=PN?OB=(﹣t2+3t)6=﹣t2+9t=﹣(t﹣3)2+,∴當t=3時,△PAB的面積有最大值;(3)如圖2,∵PH⊥OB于H,∴∠DHB=∠AOB=90176?!逷E∥x軸、PD⊥x軸,∴∠DPE=90176?!唷螮DP與∠BDH互為對頂角,即點E與點A重合,則當y=6時,﹣x2+2x+6=6,解得:x=0(舍)或x=4,即點P(4,6).【點睛】本題考查了二次函數(shù)的綜合問題,涉及到待定系數(shù)法、二次函數(shù)的最值、等腰直角三角形的判定與性質(zhì)等,熟練掌握和靈活運用待定系數(shù)法求函數(shù)解析式、二次函數(shù)的性質(zhì)、等腰直角三角形的判定與性質(zhì)等是解題的關(guān)鍵.2.如圖,關(guān)于x的二次函數(shù)y=x2+bx+c的圖象與x軸交于點A(1,0)和點B與y軸交于點C(0,3),拋物線的對稱軸與x軸交于點D.(1)求二次函數(shù)的表達式; (2)在y軸上是否存在一點P,使△PBC為等腰三角形?若存在.請求出點P的坐標; (3)有一個點M從點A出發(fā),以每秒1個單位的速度在AB上向點B運動,另一個點N從點D與點M同時出發(fā),以每秒2個單位的速度在拋物線的對稱軸上運動,當點M到達點B時,點M、N同時停止運動,問點M、N運動到何處時,△MNB面積最大,試求出最大面積.【答案】(1)二次函數(shù)的表達式為:y=x2﹣4x+3;(2)點P的坐標為:(0,3+3)或(0,3﹣3)或(0,3)或(0,0);(3)當點M出發(fā)1秒到達D點時,△MNB面積最大,最大面積是1.此時點N在對稱軸上x軸上方2個單位處或點N在對稱軸上x軸下方2個單位處.【解析】【分析】(1)把A(1,0)和C(0,3)代入y=x2+bx+c得方程組,解方程組即可得二次函數(shù)的表達式;(2)先求出點B的坐標,再根據(jù)勾股定理求得BC的長,當△PBC為等腰三角形時分三種情況進行討論:
點擊復制文檔內(nèi)容
環(huán)評公示相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1