freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

構(gòu)造一次函數(shù)證明不等式-文庫吧資料

2024-11-10 18:04本頁面
  

【正文】 指出等號何時成立。一般對與一元二次函數(shù)有關(guān)或能通過等價轉(zhuǎn)化為一元二次方程的,都可考慮使用判別式,但使用時要注意根的取值范圍和題目本身條件的限制。一、結(jié)合勘根定理,利用判別式“△”的特點(diǎn)構(gòu)造函數(shù)證明不等式例1若a,b,c∈R,且a≠0,又4a+6b+c0,a3b+(x),設(shè)f(x)=ax2+3bx+c(a≠0),由f(2)=4a+6b+c0,f(1)=a3b+cf(x)+3bx+c=0可知△=(3b)24ac0,所以可得:9b2,抓住問題本質(zhì),通過構(gòu)造二次函數(shù),將所要證明的結(jié)論轉(zhuǎn)化成判別式“△”的問題,再結(jié)合勘根定理和二次函數(shù)知識,、結(jié)合構(gòu)造函數(shù)的單調(diào)性證明不等式例2(2005年人教A版《選修45不等式選講》例題改編)已知a,b,c是實(shí)數(shù),求證:|a+b+c|1+|a+b+c|≤|a|1+|a|+|b|1+|b|+|c|1+|c|.證明構(gòu)造函數(shù)f(x),設(shè)f(x)=x1+x(x≥0).由于f′(x)=1(1+x)2,所以結(jié)合導(dǎo)數(shù)知識可知f(x)在[0,+∞)上是增函數(shù).∵0≤|a+b+c|≤|a|+|b|+|c|,∴f(|a+b+c|)≤f(|a|+|b|+|c|),即|a+b+c|1+|a+b+c|≤|a|+|b|+|c|1+|a|+|b|+|c|=|a|1+|a|+|b|+|c|+|b|1+|a|+|b|+|c|+|c|1+|a|+|b|+|c|≤|a|1+|a|+|b|1+|b|+|c|1+|c|.、結(jié)合構(gòu)造函數(shù)在某個區(qū)間的最值證明不等式例3(第36屆IMO試題)設(shè)a,b,c為正實(shí)數(shù),且滿足abc=1,求證:1a3(b+c)+1b3(c+a)+1c3(a+b)≥,設(shè)f(a,b,c)=1a3(b+c)+1b3(c+a)+1c3(a+b),顯然a=b=c=1時,f(a,b,c)=32≥=1,a,b,c為正實(shí)數(shù),則a,b,c中必有一個不大于1,不妨設(shè)0f(a,b,c)f(a,1,c)=(1b)1a3(b+c)(1+c)+1+b+b2b3(a+c)+1c3(a+b)(1+a)≥0,∴f(a,b,c)≥f(a,1,c),因此要證f(a,b,c)≥32,只要證f(a,1,c)≥32,此時ac=1,∴a,1,c成等比數(shù)列,令a=q1,c=q(q0).f(a,1,c)=q31+q+qq2+1+1q2(1+q)=q5+1q2(1+q)+qq2+1=(q4+1)(q3+q)+q2q2+qq2+1=(q2+q2)(q+q1)+1q+q1+1=t2t+1t1.(其中t=q+q1,且t≥2).由導(dǎo)數(shù)知識(方法同例例3)可知函數(shù)f(a,1,c)=t2t+1t1(t≥2)是增函數(shù),當(dāng)且僅當(dāng)t=2q=1a=c=1時,(f(a,1,c))min=222+121=32成立,∴f(a,1,c)≥(a,b,c)≥f(a,1,c)≥。(x)=+^2當(dāng)x2時,有f39。故必存在常數(shù)a,使原不等式對大于1的任意x、y恒成立。若s≥f(t)恒成立,則s的最小值為f(t)的最大值;若 s≤f(t)恒成立,則s的最大值為f(t)的最小值。例求證:必存在常數(shù)a,使得Lg(xy)≤ +lg2y對大于1的任意x與y恒成立。1+x222x2證明:設(shè) y=,則yxx+y=0 21+x ∵x為任意實(shí)數(shù) ∴上式中Δ≥0,即(1)4y≥0 1 411得:—≤y≤22x11 ∴—≤≤21+x22 ∴y≤2[說明]應(yīng)用判別式說明不等式,應(yīng)特別注意函數(shù)的定義域。利用函數(shù)的值域例若x為任意實(shí)數(shù),求證:—x11≤≤ 221+x2[分析]本題可以直接使用分析法或比較法證明,但過程較繁。若考慮構(gòu)造函數(shù),運(yùn)用函數(shù)的單調(diào)性證明,問題將迎刃而解。若采用函數(shù)思想,構(gòu)造出與所證不等式密切相關(guān)的函數(shù),利用函數(shù)的單調(diào)性來比較函數(shù)值而證之,思路則更為清新。abc2bxb)2+(3cxc)21492++)x12x+1,(Qa+b+c=1)abc111由f(x)179。42﹤,b,c,d206。0,得⊿≤0,即⊿=4(4a+1+4b+1+4c+1+4d+1)2128163。R+且a+b+c+d=1,求證:4a+1+4b+1+4c+1+4d+1﹤6。0,得⊿≤0,就可以使一些用一般方法處理較繁瑣的問題,獲得簡捷明快的證明。4。235。234。4249。b163。a+b+c=2∴⊿=(b2)24(b22b+1)=3b2+4b179
點(diǎn)擊復(fù)制文檔內(nèi)容
環(huán)評公示相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1