【摘要】第一篇:2011全國高中數(shù)學(xué)競賽講義-不等式的證明(練習(xí)題) 數(shù)學(xué)教育網(wǎng)---數(shù)學(xué)試題-數(shù)學(xué)教案-數(shù)學(xué)課件-數(shù)學(xué)論文-競賽試題-中高考試題信息:// §14不等式的證明 課后練習(xí) (1)方...
2024-11-03 12:00
【摘要】不等式的性質(zhì)不等式不等式的證明不等式的解法應(yīng)用不等式的性質(zhì)互逆性—ab傳遞性—ab,bc可加性—ab推論移項(xiàng)法則—a+cb同向可加—ab,cd可乘性—ab,推論同向正
2025-07-28 01:43
【摘要】柯西不等式?答案:及幾種變式.、b、c、d為實(shí)數(shù),求證證法:(比較法)=….=定理:若a、b、c、d為實(shí)數(shù),則.變式:或或.定理:設(shè),則(當(dāng)且僅當(dāng)時(shí)取等號,假設(shè))變式:.定理:設(shè)是兩個(gè)向量,則.等號成立?(是零向量,或者共線)練習(xí):已知a、b、c、d為實(shí)數(shù),求證.
2025-04-10 05:05
【摘要】第一篇:高中數(shù)學(xué)不等式證明的常用方法經(jīng)典例題 關(guān)于不等式證明的常用方法 (1)比較法證不等式有作差(商)、變形、判斷三個(gè)步驟,變形的主要方向是因式分解、配方,判斷過程必須詳細(xì)敘述如果作差以后的式子...
2024-11-06 18:44
【摘要】2021/1/61高中數(shù)學(xué)復(fù)習(xí)課代數(shù)第五章不等式第一課時(shí)[知識(shí)要點(diǎn)]本章的知識(shí)要點(diǎn)包括:不等式、不等式的性質(zhì)、不等式的證明、不等式的解法、含有絕對值的不等式。這些知識(shí)點(diǎn)間和內(nèi)在
2024-12-08 12:27
【摘要】 大家網(wǎng) 11/12高中數(shù)學(xué)不等式解題漫談一、活用倒數(shù)法則巧作不等變換——不等式的性質(zhì)和應(yīng)用不等式的性質(zhì)和運(yùn)算法則有許多,如對稱性,傳遞性,,尤其是不等變換有很大的優(yōu)越性.倒數(shù)法則:若ab0,則ab與1.分析:當(dāng)a1時(shí),原
2025-06-13 23:55
【摘要】菜單課后作業(yè)典例探究·提知能自主落實(shí)·固基礎(chǔ)高考體驗(yàn)·明考情新課標(biāo)·文科數(shù)學(xué)(安徽專用)第四節(jié)基本不等式菜單課
2025-01-12 16:33
【摘要】第一篇:高中數(shù)學(xué)知識(shí)點(diǎn):不等式的證明及應(yīng)用 不等式的證明及應(yīng)用 知識(shí)要點(diǎn): 1.不等式證明的基本方法: ìa-b0?ab ?(1)比較法:ía-b=0?a=b ?a-b0?ab? ...
2024-11-06 18:11
【摘要】第2課時(shí)基本不等式【課標(biāo)要求】1.理解并掌握定理1、定理2,會(huì)用兩個(gè)定理解決函數(shù)的最值或值域問題.2.能運(yùn)用平均值不等式(兩個(gè)正數(shù)的)解決某些實(shí)際問題.【核心掃描】1.基本不等式常用來考查函數(shù)最值等問題,要注意不等式成立的前提條件.(重點(diǎn))2.實(shí)際應(yīng)用中的最值問題通常轉(zhuǎn)化為y=ax+bx
2025-07-29 17:21
【摘要】為您服務(wù)教育網(wǎng)·易做易錯(cuò)題選不等式部分一、選擇題:1.(如中)設(shè)若0f(b)f(c),則下列結(jié)論中正確的是A(a-1)(c-1)0Bac1Cac=1Dac1錯(cuò)解原因是沒有數(shù)形結(jié)合意識(shí),正解是作出函數(shù)的圖象,由圖可得出選D.2.(如中)設(shè)成立的充分
2025-01-20 11:11
【摘要】含參數(shù)的一元二次不等式的解法解含參數(shù)的一元二次不等式,通常情況下,均需分類討論,那么如何討論呢?對含參一元二次不等式常用的分類方法有三種:一、按項(xiàng)的系數(shù)的符號分類,即;例1解不等式:分析:本題二次項(xiàng)系數(shù)含有參數(shù),,故只需對二次項(xiàng)系數(shù)進(jìn)行分類討論。解:∵解得方程兩根∴當(dāng)時(shí),解集為當(dāng)時(shí),不等式為,解集為當(dāng)時(shí),解集為例2
2025-04-10 05:10
【摘要】不等式解題漫談一、活用倒數(shù)法則巧作不等變換——不等式的性質(zhì)和應(yīng)用不等式的性質(zhì)和運(yùn)算法則有許多,如對稱性,傳遞性,,尤其是不等變換有很大的優(yōu)越性.倒數(shù)法則:若ab0,則ab與1.分析:當(dāng)a1時(shí),原不等式等價(jià)于:1-a,即&
【摘要】解不等式高考要求不等式要求層次重難點(diǎn)一元二次不等式C解一元二次不等式例題精講板塊一:解一元二次不等式(一)知識(shí)內(nèi)容1.含有一個(gè)未知數(shù),且未知數(shù)的最高次數(shù)為的整式不等式,叫做一元二次不等式.一元二次不等式的解集,一元二次方程的根及二次函數(shù)圖象之間的關(guān)系如下表(以為例):判別式
2025-07-30 02:03
【摘要】高中數(shù)學(xué)不等式練習(xí)題 一.選擇題(共16小題)1.若a>b>0,且ab=1,則下列不等式成立的是( )A.a(chǎn)+<<log2(a+b)) B.<log2(a+b)<a+C.a(chǎn)+<log2(a+b)< D.log2(a+b))<a+<2.設(shè)x、y、z為正數(shù),且2x=3y=5z,則( ?。〢.2x<3y<5z B.5z<2x<3y C.3y<5z<2x D.3y<2x
【摘要】第一篇:高中數(shù)學(xué)復(fù)習(xí)專題講座關(guān)于不等式證明的常用方法 高考要求 不等式的證明,方法靈活多樣,它可以和很多內(nèi)容結(jié)合高考解答題中,常滲透不等式證明的內(nèi)容,純不等式的證明,歷來是高中數(shù)學(xué)中的一個(gè)難點(diǎn),本...
2024-11-09 12:32