freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

二次根式教學(xué)設(shè)計(jì)及擴(kuò)展資料-文庫(kù)吧資料

2024-11-04 17:10本頁(yè)面
  

【正文】 要求學(xué)生積極探究、思考,及時(shí)加以鞏固,克服學(xué)習(xí)困難,真正“學(xué)會(huì)”。過(guò)程與方法:能運(yùn)用二次根式的概念解決有關(guān)問(wèn)題、情感態(tài)度與價(jià)值觀:經(jīng)歷觀察、比較、總結(jié)和應(yīng)用等數(shù)學(xué)活動(dòng),感受數(shù)學(xué)活動(dòng)充滿(mǎn)了探索性和創(chuàng)造性,體驗(yàn)發(fā)現(xiàn)的快樂(lè),并提高應(yīng)用的意識(shí)。)六、布置作業(yè)《二次根式混合運(yùn)算習(xí)題課》教學(xué)設(shè)計(jì)楊桂花二次根式教學(xué)設(shè)計(jì)5一、教學(xué)目標(biāo)知識(shí)與技能:理解二次根式的概念。)《二次根式混合運(yùn)算習(xí)題課》教學(xué)設(shè)計(jì)楊桂花五、小結(jié)本節(jié)課你有哪些收獲?還有什么要提醒同學(xué)們注意的。(2)二次根式混合運(yùn)算與整式的運(yùn)算有很多相似之處,因此可類(lèi)比整式的運(yùn)算進(jìn)行二次根式的混合運(yùn)算。發(fā)動(dòng)其他學(xué)生評(píng)價(jià)補(bǔ)充完善。教學(xué)難點(diǎn):類(lèi)比整式運(yùn)算準(zhǔn)確快速的進(jìn)行二次根式的混合運(yùn)算。在進(jìn)行二次根式混合運(yùn)算的過(guò)程中,體會(huì)類(lèi)比思想,逐步養(yǎng)成認(rèn)真仔細(xì)的學(xué)習(xí)品質(zhì),進(jìn)一步提高運(yùn)算能力。(1)經(jīng)常用于乘法的運(yùn)算中.(2)可以把任何一個(gè)非負(fù)數(shù)寫(xiě)成一個(gè)數(shù)的平方的形式,解決在實(shí)數(shù)范圍內(nèi)因式分解等方面的問(wèn)題.(四)練習(xí)和作業(yè)練習(xí):1.填空注意第(4)題需有2m≥0,m≥0,又需有—3m≥0,即m≤0,故m=0.2.實(shí)數(shù)a、b在數(shù)軸上對(duì)應(yīng)點(diǎn)的位置如下圖所示:分析:通過(guò)本題滲透數(shù)形結(jié)合的思想,進(jìn)一步鞏固二次根式的定義、性質(zhì),引導(dǎo)學(xué)生分析:由于a<0,b>0,且|a|>|b|.3.計(jì)算二、作業(yè)教材P.172習(xí)題11.1;A組3;B組2.補(bǔ)充作業(yè):下列各式中的字母滿(mǎn)足什么條件時(shí),才能使該式成為二次根式?分析:要使這些式成為二次根式,只要被開(kāi)方式是非負(fù)數(shù)即可,啟發(fā)學(xué)生分析如下:(1)由—|a—2b|≥0,得a—2b≤0,但根據(jù)絕對(duì)值的性質(zhì),有|a—2b|≥0,∴|a—2b|=0,即a—2b=0,得a=2b.(2)由(—m2—1)(m—n)≥0,—(m2+1)(m—n)≥0∴(m2+1)(m—n)≤0,又m2+1>0,∴m—n≤0,即m≤n.二次根式教學(xué)設(shè)計(jì)3教學(xué)準(zhǔn)備教學(xué)目標(biāo)(1)學(xué)生能用二次根式表示實(shí)際問(wèn)題中的數(shù)量和數(shù)量關(guān)系,體會(huì)研究二次根式的必要性.(2)學(xué)生能根據(jù)算術(shù)平方根的意義了解二次根式的概念,知道被開(kāi)方數(shù)必須是非負(fù)數(shù)的理由,知道二次根式本身是一個(gè)非負(fù)數(shù),會(huì)求二次根式中被開(kāi)方數(shù)字母的取值范圍.教學(xué)重點(diǎn)/難點(diǎn)理解二次根式的雙重非負(fù)性、教學(xué)用具標(biāo)簽教學(xué)過(guò)程1.創(chuàng)設(shè)情境,提出問(wèn)題問(wèn)題1你能用帶有根號(hào)的的式子填空嗎?(1)面積為3的正方形的邊長(zhǎng)為_(kāi)______,面積為S的正方形的39。因此,以后遇到,應(yīng)寫(xiě)成,而不宜寫(xiě)成。我們知道如果我們把,同學(xué)們想一想是否就可以把任何一個(gè)非負(fù)數(shù)寫(xiě)成一個(gè)數(shù)的平方形式了.例1計(jì)算:分析:這個(gè)例題中的四個(gè)小題,主要是運(yùn)用公式。將符號(hào)“”看作開(kāi)平方求算術(shù)平方根的運(yùn)算,看作將一個(gè)數(shù)進(jìn)行平方的運(yùn)算,而開(kāi)平方運(yùn)算和平方運(yùn)算是互為逆運(yùn)算,因而有:這里需要注意的是公式成立的條件是a≥0,提問(wèn)學(xué)生,a可以代表一個(gè)代數(shù)式嗎?請(qǐng)分析:引導(dǎo)學(xué)生答如時(shí)才成立。四、教學(xué)準(zhǔn)備:課件五、教學(xué)過(guò)程(一)復(fù)習(xí)提問(wèn)1.什么叫二次根式?2.下列各式是二次根式,求式子中的字母所滿(mǎn)足的條件:(3)∵x取任何值都有2x2≥0,所以2x2+1>0,故x的取值為任意實(shí)數(shù).(二)二次根式的簡(jiǎn)單性質(zhì)上節(jié)課我們已經(jīng)學(xué)習(xí)了二次根式的定義,并了解了第一個(gè)簡(jiǎn)單性質(zhì)我們知道,正數(shù)a有兩個(gè)平方根,分別記作零的平方根是零。二、教學(xué)重點(diǎn):二次根式成立的條件,雙重非負(fù)性;用性質(zhì)進(jìn)行計(jì)算。(二)過(guò)程與方法:體驗(yàn)性質(zhì)的推導(dǎo)過(guò)程,感受由特殊到一般的方法。會(huì)用二次根式性質(zhì)進(jìn)行有關(guān)計(jì)算。8,∴yx的平方根為177。2.化簡(jiǎn):(1) ; (2) ; (3)六、作業(yè)教材P.183習(xí)題11.3;A組1.七、板書(shū)設(shè)計(jì)二次根式教學(xué)設(shè)計(jì)91.能用二次根式表示實(shí)際問(wèn)題中的數(shù)量及數(shù)量關(guān)系,體會(huì)研究二次根式的必要性;(難點(diǎn))2.能根據(jù)算術(shù)平方根的意義了解二次根式的概念及性質(zhì),會(huì)求二次根式中被開(kāi)方數(shù)中字母的取值范圍.(重點(diǎn))一、情境導(dǎo)入問(wèn)題1:你能用帶有根號(hào)的式子填空嗎?(1)面積為3的正方形的邊長(zhǎng)為_(kāi)_______,面積為S的正方形的邊長(zhǎng)為_(kāi)_______.(2)一個(gè)長(zhǎng)方形圍欄,長(zhǎng)是寬的2倍,面積為130m2,則它的寬為_(kāi)_______m.(3)一個(gè)物體從高處自由落下,落到地面所用的時(shí)間t(單位:s)與落下的高度h(單位:m)滿(mǎn)足關(guān)系h=5t2,如果用含有h的式子表示t,則t=______.問(wèn)題2:上面得到的式子,分別表示什么意義?它們有什么共同特征?二、合作探究探究點(diǎn)一:二次根式的定義下列各式中,哪些是二次根式,哪些不是二次根式?(1);(2);(3);(4);(5);(6)(x≤3);(7)(x≥0);(8);(9);(10)(ab≥0).解析:要判斷一個(gè)根式是不是二次根式,一是看根指數(shù)是不是2,二是看被開(kāi)方數(shù)是不是非負(fù)數(shù).解:因?yàn)?,=?x≤3),(ab≥0)中的根指數(shù)都是2,且被開(kāi)方數(shù)為非負(fù)數(shù),(x≥0),的被開(kāi)方數(shù)小于0,所以不是二次根式.方法總結(jié):判斷一個(gè)式子是不是二次根式,要看所給的式子是否具備以下條件:(1)帶二次根號(hào)“”;(2)被開(kāi)方數(shù)是非負(fù)數(shù).探究點(diǎn)二:二次根式有意義的條件【類(lèi)型一】 根據(jù)二次根式有意義求字母的取值范圍求使下列式子有意義的x的取值范圍.(1);(2);(3).解析:根據(jù)二次根式的性質(zhì)和分式的意義,被開(kāi)方數(shù)大于或等于0且分母不等于0,列不等式(組)求解.解:(1)由題意得4-3x>0,解得x<.當(dāng)x<時(shí),有意義;(2)由題意得解得x≤3且x≠≤3且x≠2時(shí),有意義;(3)由題意得解得x≥-5且x≠≥-5且x≠0時(shí),有意義.方法總結(jié):含二次根式的式子有意義的條件:(1)如果一個(gè)式子中含有多個(gè)二次根式,那么它們有意義的條件是各個(gè)二次根式中的被開(kāi)方數(shù)都必須是非負(fù)數(shù);(2)如果所給式子中含有分母,則除了保證二次根式中的被開(kāi)方數(shù)為非負(fù)數(shù)外,還必須保證分母不為零.【類(lèi)型二】 利用二次根式的非負(fù)性求解(1)已知a、b滿(mǎn)足+|b-|=0,解關(guān)于x的方程(a+2)x+b2=a-1;(2)已知x、y都是實(shí)數(shù),且y=++4,求yx的平方根.解析:(1)根據(jù)二次根式的非負(fù)性和絕對(duì)值的非負(fù)性求解即可;(2)根據(jù)二次根式的非負(fù)性即可求得x的值,進(jìn)而求得y的值,進(jìn)而可求出yx的平方根.解:(1)根據(jù)題意得解得則(a+2)x+b2=a-1,即-2x+3=-5,解得x=4;(2)根據(jù)題意得解得x==4,故yx=43=64,177。例2 化簡(jiǎn):(1) ; (2) ;解:(1)(2)讓學(xué)生觀察例題中分母的特點(diǎn),然后提出, 的問(wèn)題怎樣解決?再總結(jié):這一小節(jié)開(kāi)始講的二次根式的化簡(jiǎn),只限于所得結(jié)果的式子中分母可以完全開(kāi)的盡方的情況, 的問(wèn)題,我們將在今后的學(xué)習(xí)中解決。 通過(guò)分母有理化的教學(xué),滲透數(shù)學(xué)的簡(jiǎn)潔性。 培養(yǎng)學(xué)生利用公式進(jìn)行化簡(jiǎn)與計(jì)算的能力;5。教學(xué)設(shè)計(jì)示例一、教學(xué)目標(biāo)1.掌握商的算術(shù)平方根的性質(zhì),能利用性質(zhì)進(jìn)行二次根式的化簡(jiǎn)與運(yùn)算;2.會(huì)進(jìn)行簡(jiǎn)單的運(yùn)算。3。 本節(jié)內(nèi)容可以分為三課時(shí),第一課時(shí)討論商的算術(shù)平方根的性質(zhì),并運(yùn)用這一性質(zhì)化簡(jiǎn)較簡(jiǎn)單的二次根式(被開(kāi)方數(shù)的分母可以開(kāi)得盡方的二次根式);第二課時(shí)討論法則,并運(yùn)用這一法則進(jìn)行簡(jiǎn)單的運(yùn)算以及二次根式的乘除混合運(yùn)算,這一課時(shí)運(yùn)算結(jié)果不包括根號(hào)出現(xiàn)內(nèi)出現(xiàn)分式或分?jǐn)?shù)的情況;第三課時(shí)討論分母有理化的概念及方法,并進(jìn)行二次根式的乘除法運(yùn)算,把運(yùn)算結(jié)果分母有理化。教師在此過(guò)程當(dāng)中給與適當(dāng)?shù)闹笇?dǎo),提出問(wèn)題讓學(xué)生有一定的探索方向。教法建議:1。與乘法既有聯(lián)系又有區(qū)別,強(qiáng)調(diào)根式除法結(jié)果的一般形式,避免分母上含有根號(hào)。商的算術(shù)平方根的性質(zhì)是本節(jié)的主線(xiàn),學(xué)生掌握性質(zhì)在二次根使得化簡(jiǎn)和運(yùn)算的運(yùn)用是關(guān)鍵,從化簡(jiǎn)與運(yùn)算由引出初中重要的內(nèi)容之一分母有理化,分母有理化的理解決定了最簡(jiǎn)二次根式化簡(jiǎn)的掌握。三、鞏固練習(xí)1.把下列各式化成最簡(jiǎn)二次根式:2.判斷下列各根式,哪些是最簡(jiǎn)二次根式?哪些不是最簡(jiǎn)二次根式?如果不是,把它化成最簡(jiǎn)二次根式。當(dāng)被開(kāi)方數(shù)是分?jǐn)?shù)或分式時(shí),根據(jù)分式的基本性質(zhì)和商的算術(shù)平方根的性質(zhì)化去分母。第(2)條說(shuō)明被開(kāi)方數(shù)中每個(gè)因式的指數(shù)小于2;特別注意被開(kāi)方數(shù)應(yīng)化為因式連乘積的形式。3.啟發(fā)學(xué)生回答:二次根式,請(qǐng)同學(xué)們考慮一下被開(kāi)方數(shù)符合什么條件的二次根式叫做最簡(jiǎn)二次根式?二、講解新課1.總結(jié)學(xué)生回答的內(nèi)容后,給出最簡(jiǎn)二次根式定義:滿(mǎn)足下列兩個(gè)條件的二次根式叫做最簡(jiǎn)二次根式:(1)被開(kāi)方數(shù)的因數(shù)是整數(shù),因式是整式;(2)被開(kāi)方數(shù)中不含能開(kāi)得盡的因數(shù)或因式。教學(xué)難點(diǎn)一個(gè)二次根式化成最簡(jiǎn)二次根式的方法。教學(xué)重點(diǎn)最簡(jiǎn)二次根式的39。例2把下列非負(fù)數(shù)寫(xiě)成一個(gè)數(shù)的平方的形式:(1)5;(2)11;(3);(4).例3把下列各式寫(xiě)成平方差的形式,再分解因式:(1)4x21;(2)a49;(3)3a210;(4)a46a2+9.解:(1)4x21=(2x)212=(2x+1)(2x1).(2)a49=(a2)232=(a2+3)(a23)(3)3a210(4)a46a2+32=(a2)26a2+32=(a23)2(三)小結(jié)1.繼續(xù)鞏固二次根式的定義,及二次根式中被開(kāi)方數(shù)的取值范圍問(wèn)題.2.關(guān)于公式的應(yīng)用。其中(2)、(3)、(4)題又運(yùn)用了整式乘除中學(xué)習(xí)的積的冪的運(yùn)算性質(zhì).結(jié)合第(2)小題中的,說(shuō)明,這與帶分?jǐn)?shù)。時(shí)才成立,即a取任意實(shí)數(shù)時(shí)都成立。引導(dǎo)學(xué)生總結(jié)出,其中,就是一個(gè)非負(fù)數(shù)a的算術(shù)平方根。三、教學(xué)難點(diǎn)性質(zhì)的逆用。(三)情感態(tài)度:激發(fā)對(duì)數(shù)學(xué)的興趣。3.了解逆用公式在實(shí)數(shù)范圍內(nèi)因式分解。問(wèn)題2上面得到的式子√3,√s,√h5分別表示什么意義?它們有什么共同特征?活動(dòng)2【活動(dòng)】講授問(wèn)題3你能用一個(gè)式子表示一個(gè)非負(fù)數(shù)的算術(shù)平方根嗎?師生活動(dòng):學(xué)生小組討論,全班交流.教師由此給出二次根式的定義:一般地,我們把形如√a(a≥0)的式子叫做二次根式,“√ ”稱(chēng)為二次根號(hào).追問(wèn):在二次根式的概念中,為什么要強(qiáng)調(diào)“a≥0”?師生活動(dòng):教師引導(dǎo)學(xué)生討論,知道二次根式被開(kāi)方數(shù)必須是非負(fù)數(shù)的理由.活動(dòng)3【講授】辨析概念例1當(dāng)x是怎樣的實(shí)數(shù)時(shí),√x2在實(shí)數(shù)范圍內(nèi)有意義?師生活動(dòng):引導(dǎo)學(xué)生從概念出發(fā)進(jìn)行思考,鞏固學(xué)生對(duì)二次根式的被開(kāi)方數(shù)為非負(fù)數(shù)的理解.例2當(dāng)x是怎樣的實(shí)數(shù)時(shí),√x2在實(shí)數(shù)范圍內(nèi)有意義?√x3呢?師生活動(dòng):先讓學(xué)生獨(dú)立思考,再追問(wèn).問(wèn)題4你能比較√a與0的大小嗎?師生活動(dòng):通過(guò)分a0和a= 0這兩種情況的討論,比較√a與0的大小,引導(dǎo)學(xué)生得出√a ≥0的結(jié)論,強(qiáng)化學(xué)生對(duì)二次根式本身為非負(fù)數(shù)的理解,活動(dòng)4【練習(xí)】練習(xí)練習(xí)當(dāng)x是什么實(shí)數(shù)時(shí),下列各式有意義、(1)√x2;(2)√34x(3)√x2√2x;(4)√xx1 、練習(xí)1完成教科書(shū)第3頁(yè)的練習(xí)、練習(xí)2當(dāng)x是什么實(shí)數(shù)時(shí),下列各式有意義、(1)√x2;(2)√34x(3)√x2√2x;(4)√xx1 、練習(xí)1完成教科書(shū)第3頁(yè)的練習(xí)、練習(xí)2當(dāng)x是什么實(shí)數(shù)時(shí),下列各式有意義、(1)√x2;(2)√34x(3)√x2√2x;(4)√xx1 、練習(xí)1完成教科書(shū)第3頁(yè)的練習(xí)、練習(xí)2當(dāng)x是什么實(shí)數(shù)時(shí),下列各式有意義、(1)√x2;(2)√34x(3)√x2√2x;(4)√xx1 、活動(dòng)5【活動(dòng)】小結(jié)小結(jié):二次根式的意義:√a(a≥0)二次根式的性質(zhì):性質(zhì)1 √a2 = a(a≥0)活動(dòng)6【測(cè)試】目標(biāo)檢測(cè)下列各式中,一定是二次根式的是A、√a B√3 、C√x2+1 、D、3√5當(dāng)x取什么時(shí),二次根式√3x無(wú)意義.當(dāng)x取何值時(shí),二次根式√x+3有最小值,其最小值是.對(duì)于√3a1a3,小紅根據(jù)被開(kāi)方數(shù)是非負(fù)數(shù),得出a的取值范圍是a ≥ 13.小慧認(rèn)為還應(yīng)考慮分母不為0的情況.你認(rèn)為小慧的想法正確嗎?試求出a的取值范圍.活動(dòng)7【作業(yè)】布置作業(yè)教科書(shū)習(xí)題11第1,3,5,7,10題.二次根式教學(xué)設(shè)計(jì)6一、教學(xué)目標(biāo):(一)知識(shí)與技能:1.了解二次根式的概念,會(huì)確定二次根式成立的條件。學(xué)生知識(shí)障礙點(diǎn)是二次根式的概念及運(yùn)算,如果學(xué)生在此不能很好地理解和正確的認(rèn)知,將對(duì)今后學(xué)習(xí)產(chǎn)生很大影響,所以要求學(xué)生積極探究、思考,及時(shí)加以鞏固,克服學(xué)習(xí)困難,真正“學(xué)會(huì)”。過(guò)程與方法:能運(yùn)用二次根式的概念解決有關(guān)問(wèn)題、情感態(tài)度與價(jià)值觀:經(jīng)歷觀察、比較、總結(jié)和應(yīng)用等數(shù)學(xué)活動(dòng),感受數(shù)學(xué)活動(dòng)充滿(mǎn)了探索性和創(chuàng)造性,體驗(yàn)發(fā)現(xiàn)的快樂(lè),并提高應(yīng)用的意識(shí)。)六、布置作業(yè)《二次根式混合運(yùn)算習(xí)題課》教學(xué)設(shè)計(jì)楊桂花二次根式教學(xué)設(shè)計(jì)5一、教學(xué)目標(biāo)知識(shí)與技能:理解二次根式的概念。)《二次根式混合運(yùn)算習(xí)題課》教學(xué)設(shè)計(jì)楊桂花五、小結(jié)本節(jié)課你有哪些收獲?還有什么要提醒同學(xué)們注意的。(2)二次根式混合運(yùn)算與整式的運(yùn)算有很多相似之處,因此可類(lèi)比整式的運(yùn)算進(jìn)行二次根式的混合運(yùn)算。發(fā)動(dòng)其他學(xué)生評(píng)價(jià)補(bǔ)充完善。教學(xué)難點(diǎn):類(lèi)比整式運(yùn)算準(zhǔn)確快速的進(jìn)行二次根式的混合運(yùn)算。在進(jìn)行二次根式混合運(yùn)算的過(guò)程中,體會(huì)類(lèi)比思想,逐步養(yǎng)成認(rèn)真仔細(xì)的學(xué)習(xí)品質(zhì),進(jìn)一步提高運(yùn)算能力。把一個(gè)式子化為最簡(jiǎn)二次根式的方法是:(1)如果被開(kāi)方數(shù)是整式或整數(shù),先把它分解成因式(或因數(shù))的積的形式,把開(kāi)得盡方的因式(或因數(shù))移到根號(hào)外;(2)如果被開(kāi)方數(shù)含有分母,應(yīng)去掉分母的根號(hào)。三、課堂練習(xí)在下列各式中,是最簡(jiǎn)二次根式的式子為 [ ]的二次根式的式子有_____個(gè)。答:如果被開(kāi)方數(shù)是分式或分?jǐn)?shù)(包括小數(shù))先利用商的算術(shù)平方根的性質(zhì),把它寫(xiě)成分式的形式,然后利用分母有理化化簡(jiǎn)。題(2)
點(diǎn)擊復(fù)制文檔內(nèi)容
試題試卷相關(guān)推薦
文庫(kù)吧 www.dybbs8.com
備案圖鄂ICP備17016276號(hào)-1