【摘要】第一章勾股定理3勾股定理的應(yīng)用2022秋季數(shù)學(xué)八年級上冊?B立體圖形表面兩點(diǎn)之間的最短距離求立體圖形表面兩點(diǎn)之間的最短距離問題.解決此類問題的依據(jù)是:兩點(diǎn)之間,最短.為此需先將立體圖形的表面展開,將立體圖形轉(zhuǎn)化為圖形;再作兩點(diǎn)之間的,構(gòu)造直角三角形;最后通過
2025-06-24 12:27
【摘要】第1章勾股定理專題二勾股定理的綜合應(yīng)用1.直角三角形一直角邊長為11,另兩邊長均為自然數(shù),則其周長是()A.121B.120C.132D.以上都不對C2.如圖,一棵大樹在離地面9米處斷裂,樹頂部落在離樹底12米處,則樹斷裂之前的高度為(
2024-12-03 22:42
【摘要】勾股定理的應(yīng)用學(xué)習(xí)目標(biāo)1.明確解決路線最短問題應(yīng)轉(zhuǎn)化為“在同一平面內(nèi),兩點(diǎn)之間線段最短”.2.掌握構(gòu)造直角三角形,運(yùn)用勾股定理求線段的長.課前預(yù)習(xí)1.已知三角形的三邊長分別為5,12,13,則此三角形的面積為.2.有一組勾股數(shù),其中兩個為8和15,那么第三個為.
2024-12-03 22:44
【摘要】勾股定理的應(yīng)用有一個圓柱,它的高等于12cm,底面圓的周長為A點(diǎn)有一只螞蟻,它想吃到上底面上與A點(diǎn)相對的B點(diǎn)處的食物,需要爬行的最短路程是多少?AB試一試同學(xué)們可自己做一個圓柱,嘗試從A點(diǎn)到B點(diǎn)沿圓柱的側(cè)面畫出幾條路線,你覺得哪條路線最短呢?議一議如圖,將圓
2024-12-15 22:12
【摘要】第一章勾股定理1探索勾股定理2022秋季數(shù)學(xué)八年級上冊?B認(rèn)識勾股定理直角三角形兩直角邊的等于斜邊的,如果用a、b、c分別表示直角三角形的兩直角邊和斜邊,那么.自我診斷1.1.在△ABC中,∠C=90°,a、
2025-06-26 20:23
【摘要】第一章勾股定理專題突破一勾股定理的應(yīng)用2022秋季數(shù)學(xué)八年級上冊?B類型1利用勾股定理求線段長1.在△ABC中,AB=AC=5,BC=6.若點(diǎn)P在邊AC上移動,求BP最小值是多少?解:過A作AD⊥BC于D,∵AB=AC=5,BC=6
2025-06-25 18:04
2025-06-27 05:34
【摘要】勾股定理第一章一個直角三角形的直角邊長分別是3和4,你知道它的斜邊長是多少嗎?要解決這個問題,就用到了我們即將要學(xué)習(xí)的——勾股定理.勾股世界我國是最早了解勾股定理的國家之一.早在三多年前,周朝數(shù)學(xué)家商高就提出,將一根直尺折成一個直角三角形,如果勾等于三,股等于四,那么弦就等于五.即“勾三、股四、弦
【摘要】八年級數(shù)學(xué)北師大版·上冊第一章第一章勾股定理勾股定理勾股定理的應(yīng)用如圖所示,有一個圓柱,它的高等于12cm,底面上圓的周長等于18cm.在圓柱下底面的點(diǎn)A有一只螞蟻,它想吃到上底面上與點(diǎn)A相對的點(diǎn)B處的食物,沿圓柱側(cè)面爬行的最短路程是多少?(1)自己做一個圓柱,嘗試從點(diǎn)A到點(diǎn)B沿圓柱側(cè)面畫出幾條路線,你覺得哪條路線最
2025-06-25 12:11
【摘要】探索勾股定理學(xué)習(xí)目標(biāo),并利用拼圖的方法論證勾股定理的存在.2.理解和掌握“直角三角形兩條直角邊的平方和等于斜邊的平方”.3.在探索和實(shí)際操作中掌握勾股定理在實(shí)際生活中的應(yīng)用.課前預(yù)習(xí)1.若直角三角形中兩直角邊分別為a,b,斜邊為c,則a,b,c之間的數(shù)量關(guān)系為
【摘要】第1章勾股定理(時間:120分鐘滿分:120分)一、選擇題(每小題3分,共30分)1.將直角三角形的三邊長同時擴(kuò)大2倍,得到的三角形是(C)A.鈍角三角形B.銳角三角形C.直角三角形D.等腰三角形2.如果梯子的底端離建筑物5米,那么13米長的梯子可以達(dá)到建筑物的高度是(
2024-12-06 01:28
2024-12-15 22:57
【摘要】初中數(shù)學(xué)(北師大版)八年級上冊第一章勾股定理知識點(diǎn)一圓柱側(cè)面上兩點(diǎn)間的最短距離圓柱側(cè)面的展開圖是一個長方形.圓柱側(cè)面上兩點(diǎn)之間最短距離的求法是把圓柱側(cè)面展開成平面圖形,依據(jù)兩點(diǎn)之間線段最短,以最短路線為斜邊構(gòu)造直角三角形,利用勾股定理求解.3勾股定理的應(yīng)用例1如圖1-3-1所示,一個圓
2025-06-26 13:04
【摘要】3勾股定理的應(yīng)用,構(gòu)造三角形,碰到空間曲面上兩點(diǎn)間的最短距離問題,一般是化空間問題為問題來解決,它的理論依據(jù)是“兩點(diǎn)之間,最短”.,在圓柱的軸截面ABCD中,AB=,BC=12,動點(diǎn)P從點(diǎn)A出發(fā),沿著圓柱的側(cè)面移動到BC的中點(diǎn)S的最短距離為()1
2025-06-25 12:21