【摘要】第1章勾股定理專題二勾股定理的綜合應(yīng)用1.直角三角形一直角邊長為11,另兩邊長均為自然數(shù),則其周長是()A.121B.120C.132D.以上都不對C2.如圖,一棵大樹在離地面9米處斷裂,樹頂部落在離樹底12米處,則樹斷裂之前的高度為(
2024-12-03 22:42
【摘要】勾股定理的應(yīng)用學(xué)習(xí)目標(biāo)1.明確解決路線最短問題應(yīng)轉(zhuǎn)化為“在同一平面內(nèi),兩點之間線段最短”.2.掌握構(gòu)造直角三角形,運用勾股定理求線段的長.課前預(yù)習(xí)1.已知三角形的三邊長分別為5,12,13,則此三角形的面積為.2.有一組勾股數(shù),其中兩個為8和15,那么第三個為.
2024-12-03 22:44
【摘要】勾股定理的應(yīng)用欲登12米高的建筑物,為安全需要,需使梯子底端離建筑物5米,至少需多長的梯子?復(fù)習(xí)回顧分析:根據(jù)題意,(如圖)AC是建筑物,則AC=12米,BC=5米,AB是梯子的長度.解:根據(jù)題意,(如圖)AC是建筑物,則AC=12米,BC=5米,AB是梯子的長度.所以在Rt△ABC中,
2024-12-15 22:12
【摘要】第一章勾股定理3勾股定理的應(yīng)用2022秋季數(shù)學(xué)八年級上冊?B立體圖形表面兩點之間的最短距離求立體圖形表面兩點之間的最短距離問題.解決此類問題的依據(jù)是:兩點之間,最短.為此需先將立體圖形的表面展開,將立體圖形轉(zhuǎn)化為圖形;再作兩點之間的,構(gòu)造直角三角形;最后通過
2025-06-26 12:13
2025-06-24 12:27
【摘要】探索勾股定理學(xué)習(xí)目標(biāo),并利用拼圖的方法論證勾股定理的存在.2.理解和掌握“直角三角形兩條直角邊的平方和等于斜邊的平方”.3.在探索和實際操作中掌握勾股定理在實際生活中的應(yīng)用.課前預(yù)習(xí)1.若直角三角形中兩直角邊分別為a,b,斜邊為c,則a,b,c之間的數(shù)量關(guān)系為
【摘要】第二章實數(shù)6.實數(shù)知識回顧?有理數(shù)怎樣分類?整數(shù)分?jǐn)?shù)有理數(shù)正有理數(shù)負(fù)有理數(shù)有理數(shù)0?帶根號的數(shù)都是無理數(shù)嗎?無理數(shù)是無限不循環(huán)小數(shù).帶根號的數(shù)不一定是無理數(shù).把下列各數(shù)分別填入相應(yīng)的集合內(nèi):,41,23,7,?,25?,2,320,5?,83?
【摘要】估算某地開辟了一塊長方形荒地,新建一個以環(huán)保為主題的公園。已知這塊荒地的長是寬的2倍,它的面積為400000米2。(1)公園的寬大約是多少?它有1000米嗎?問題情景10002021S=4000002021×1000=2021000400000公園的寬沒有1000米
【摘要】第2課時勾股定理的實際應(yīng)用勾股定理:直角三角形兩直角邊的平方和等于斜邊的平方.a(chǎn)bcABC如果在Rt△ABC中,∠C=90°,那么222.abc??下面,我們用面積計算來證明這個定理。復(fù)習(xí)引入首頁請同學(xué)們畫四個與右圖全等的直角三角形,并把它剪下來。
2024-11-26 19:46
2024-12-15 22:57
【摘要】初中數(shù)學(xué)(北師大版)八年級上冊第一章勾股定理知識點一圓柱側(cè)面上兩點間的最短距離圓柱側(cè)面的展開圖是一個長方形.圓柱側(cè)面上兩點之間最短距離的求法是把圓柱側(cè)面展開成平面圖形,依據(jù)兩點之間線段最短,以最短路線為斜邊構(gòu)造直角三角形,利用勾股定理求解.3勾股定理的應(yīng)用例1如圖1-3-1所示,一個圓
2025-06-26 13:04
【摘要】3勾股定理的應(yīng)用,構(gòu)造三角形,碰到空間曲面上兩點間的最短距離問題,一般是化空間問題為問題來解決,它的理論依據(jù)是“兩點之間,最短”.,在圓柱的軸截面ABCD中,AB=,BC=12,動點P從點A出發(fā),沿著圓柱的側(cè)面移動到BC的中點S的最短距離為()1
2025-06-25 12:21
【摘要】第一章勾股定理專題突破一勾股定理的應(yīng)用2022秋季數(shù)學(xué)八年級上冊?B類型1利用勾股定理求線段長1.在△ABC中,AB=AC=5,BC=6.若點P在邊AC上移動,求BP最小值是多少?解:過A作AD⊥BC于D,∵AB=AC=5,BC=6
2025-06-25 18:04
2025-06-25 22:14
2025-06-27 05:34