【摘要】數(shù)列不等式證明的幾種方法數(shù)列和不等式都是高中數(shù)學(xué)重要內(nèi)容,這兩個重點知識的聯(lián)袂、交匯融合,更能考查學(xué)生對知識的綜合理解與運用的能力。這類交匯題充分體現(xiàn)了“以能力立意”的高考命題指導(dǎo)思想和“在知識網(wǎng)絡(luò)交匯處”設(shè)計試題的命題原則。下面就介紹數(shù)列不等式證明的幾種方法,供復(fù)習(xí)參考。一、巧妙構(gòu)造,利用數(shù)列的單調(diào)性例1.對任意自然數(shù)n,求證:。證明:構(gòu)造數(shù)列。所以,即為單調(diào)遞增數(shù)列
2025-07-29 16:02
【摘要】第一篇:放縮法證明數(shù)列不等式 放縮法證明不等式 1、設(shè)數(shù)列{an}的前n項的和Sn= 43an- 13′ 2n n+ 1+ 3(n=1,2,3,L) n (Ⅰ)求首項a1與通項an...
2024-10-28 04:58
【摘要】第一篇:利用放縮法證明數(shù)列不等式的技巧“揭秘” 龍源期刊網(wǎng)://. 利用放縮法證明數(shù)列不等式的技巧“揭秘”作者:顧冬生 來源:《新高考·高三數(shù)學(xué)》2013年第06期 數(shù)列型不等式的證明題,常常...
2024-10-28 22:50
【摘要】利用放縮法證明數(shù)列型不等式壓軸題摘要:縱觀近幾年高考數(shù)學(xué)卷,壓軸題很多是數(shù)列型不等式,其中通常需要證明數(shù)列型不等式,它不但可以考查證明不等式和數(shù)列的各種方法,而且還可以綜合考查其它多種數(shù)學(xué)思想方法,充分體現(xiàn)了能力立意的高考命題原則。處理數(shù)列型不等式最重要要的方法為放縮法。放縮法的本質(zhì)是基于最初等的四則運算,利用不等式的傳遞性,其優(yōu)點是能迅速地化繁為簡,化難為易,達到事半功倍的效
2025-03-30 12:45
【摘要】第一篇:關(guān)于和式的數(shù)列不等式證明方法 關(guān)于“和式”的數(shù)列不等式證明方法 方法:先求和,再放縮 例 1、設(shè)數(shù)列{an}滿足a1=0且an 1n,2an+1=1+an+1gan,n ?N*,記...
2024-10-28 23:38
【摘要】第一篇:放縮法與數(shù)列不等式的證明 2017高三復(fù)習(xí)靈中黃老師的專題 放縮法證明數(shù)列不等式 編號:001引子:放縮法證明數(shù)列不等式歷來是高中數(shù)學(xué)的難點,在高考數(shù)列試題中經(jīng)常扮演壓軸的角色。由于放縮...
2024-10-28 03:17
【摘要】第一篇:放縮法證明數(shù)列不等式經(jīng)典例題 放縮法證明數(shù)列不等式 主要放縮技能:=2=-nn+1n(n+1)nn(n-1)n-1n 114411===2(-) 22n4n-1(2n+1)(2n...
2024-10-28 01:13
【摘要】放縮法證明數(shù)列不等式主要放縮技能:1.2.3.4.5.6.,最大值為,且(1)求;(2)證明::,且,;(1)求證:數(shù)列是等差數(shù)列;(2)解關(guān)于數(shù)列的不等式:(3)記,證明:例4.已知數(shù)列滿足:是公差為1的等差數(shù)
2025-03-31 02:44
【摘要】數(shù)列與不等式舉例(放縮法)1、構(gòu)造等差數(shù)列,完成放縮。例1:已知數(shù)列,滿足,。(1)證明:;(2)設(shè)為數(shù)列的前項和,證明:。分析:(1),可證是單調(diào)減少的,即;,猜測應(yīng)放大為一個等差數(shù)列,公差為。將化為,即證。(2)由(1)得,所以。兩邊平方得,猜想放大為一個等差數(shù)列,公差為2。將轉(zhuǎn)化為只需證。練習(xí):1、(2015學(xué)年第一學(xué)期諸暨期末)已
2025-07-01 01:55
【摘要】第一篇:導(dǎo)數(shù)與數(shù)列不等式的綜合證明問題 導(dǎo)數(shù)與數(shù)列不等式的綜合證明問題 典例:(2017全國卷3,21)已知函數(shù)f(x)=x-1-alnx。(1)若f(x)30,求a的值; (2)設(shè)m為整數(shù),且...
2024-10-28 18:52
【摘要】第一篇:構(gòu)造函數(shù),利用導(dǎo)數(shù)證明不等式 構(gòu)造函數(shù),利用導(dǎo)數(shù)證明不等式 湖北省天門中學(xué)薛德斌2010年10月 例 1、設(shè)當(dāng)x?[a,b]時,f/(x)g/(x),求證:當(dāng)x?[a,b]時,f(x...
2024-10-26 21:14
【摘要】數(shù)列與不等式證明方法歸納共歸納了五大類,16種放縮技巧,30道典型例題及解析,供日后學(xué)習(xí)使用。1、數(shù)列求和(1)放縮成等比數(shù)列再求和(2)放縮成差比數(shù)列再錯位相減求和(3)放縮成可裂項相消再求和(4)數(shù)列和比大小可比較單項2、公式、定理(1)利用均值不等式(2)利用二項式定理(3)利用不動點定理(4)利用二次函數(shù)性質(zhì)3、累加、
2025-06-24 05:08
【摘要】第一篇:用放縮法證明數(shù)列求和中的不等式 用放縮法證明數(shù)列求和中的不等式 近幾年,高考試題常把數(shù)列與不等式的綜合題作為壓軸題,而壓軸題的最后一問又重點考查用放縮法證明不等式,這類試題技巧性強,難度大...
2024-10-28 05:08
【摘要】第一篇:論文-放縮法證明數(shù)列不等式的基本策略 放縮法證明數(shù)列不等式的基本策略 廣外外校姜海濤 放縮法證明數(shù)列不等式是高考數(shù)學(xué)命題的熱點和難點。所謂放縮法就是利用不等式的傳遞性,對不等式的局部進行...
2024-10-29 07:26
【摘要】第一篇:導(dǎo)數(shù)的應(yīng)用4——構(gòu)造函數(shù)證明數(shù)列不等式例題 導(dǎo)數(shù)的應(yīng)用 (四)——構(gòu)造函數(shù)證明數(shù)列不等式 例1(選講或練習(xí)):求證1111+++…+ln(1+n)234n+1 例2.已知函數(shù)f(x)...
2024-10-26 14:31