【摘要】數(shù)學(xué)歸納法數(shù)學(xué)歸納法及其應(yīng)用舉例課題引入①觀察:6=3+3,8=5+3,10=3+7,12=5+7,14=3+11,16=5+11,···78=67+11,···我們能得出什么結(jié)論?任何一個(gè)大于等于6的偶數(shù),都可以表示成兩個(gè)
2024-10-08 20:45
【摘要】第2課時(shí)函數(shù)的極值,會(huì)從幾何直觀理解函數(shù)的極值與導(dǎo)數(shù)的關(guān)系,并會(huì)靈活應(yīng)用..、參數(shù)取值范圍、判斷方程的根的個(gè)數(shù)等問題.若函數(shù)f(x)的定義域?yàn)閰^(qū)間(a,b),導(dǎo)數(shù)f'(x)在(a,b)內(nèi)的圖像如圖所示,用極值的定義你能判斷函數(shù)f(x)在(a,b)內(nèi)的極小值點(diǎn)有幾個(gè)嗎?問題
2024-11-27 23:14
【摘要】§數(shù)學(xué)歸納法學(xué)習(xí)目標(biāo)思維脈絡(luò)1.能理解用數(shù)學(xué)歸納法證明問題的原理.2.會(huì)用數(shù)學(xué)歸納法證明與正整數(shù)有關(guān)的等式及數(shù)列問題.3.能用數(shù)學(xué)歸納法證明與n有關(guān)的不等式整除問題.4.注意總結(jié)用數(shù)學(xué)歸納法證明命題的步驟與技巧方法.121.數(shù)學(xué)歸納法數(shù)學(xué)歸納法是用來證
2024-11-26 00:49
【摘要】第5課時(shí)導(dǎo)數(shù)的綜合應(yīng)用、極值、最值等..函數(shù)與導(dǎo)數(shù)是高中數(shù)學(xué)的核心內(nèi)容,函數(shù)思想貫穿中學(xué)數(shù)學(xué)全過程.導(dǎo)數(shù)作為工具,提供了研究函數(shù)性質(zhì)的一般性方法.作為“平臺(tái)”,可以把函數(shù)、方程、不等式、圓錐曲線等有機(jī)地聯(lián)系在一起,在能力立意的命題思想指導(dǎo)下,與導(dǎo)數(shù)相關(guān)的問題已成為高考數(shù)學(xué)命題的必考考點(diǎn)之一.函數(shù)與方
2024-12-13 06:30
【摘要】數(shù)學(xué)歸納法【教學(xué)目標(biāo)】了解數(shù)學(xué)歸納法的原理及使用范圍,初步掌握數(shù)學(xué)歸納法證題的兩個(gè)步驟和一個(gè)結(jié)論,會(huì)用數(shù)學(xué)歸納法證明一些簡單的等式問題;通過對(duì)歸納法的復(fù)習(xí),體會(huì)不完全歸納法的弊端,通過實(shí)例理解理論與實(shí)際的辨證關(guān)系;在學(xué)習(xí)中感受探索發(fā)現(xiàn)問題、提出問題的,解決問題的樂趣.【教學(xué)重點(diǎn)】數(shù)學(xué)歸納法證題步驟,尤其是遞推步驟中歸納假設(shè)【教學(xué)難點(diǎn)】數(shù)學(xué)歸納法的
2024-12-11 04:57
【摘要】湖南省邵陽市隆回二中選修2-2學(xué)案推理與證明數(shù)學(xué)歸納法(2)【學(xué)習(xí)目標(biāo)】1.了解數(shù)學(xué)歸納法的原理,并能以遞推思想作指導(dǎo),理解數(shù)學(xué)歸納法的操作步驟;2.能用數(shù)學(xué)歸納法證明一些簡單的數(shù)學(xué)命題,并能嚴(yán)格按照數(shù)學(xué)歸納法證明問題的格式書寫;3.數(shù)學(xué)歸納法中遞推思想的理解.【自主學(xué)習(xí)】復(fù)習(xí)1:數(shù)學(xué)歸納
2024-11-27 20:35
【摘要】新課標(biāo)人教版課件系列《高中數(shù)學(xué)》選修2-2《數(shù)學(xué)歸納法》教學(xué)目標(biāo)?了解數(shù)學(xué)歸納法的原理,能用數(shù)學(xué)歸納法證明一些簡單的數(shù)學(xué)命題。?教學(xué)重點(diǎn):?了解數(shù)學(xué)歸納法的原理第一課時(shí)一、歸納法對(duì)于某類事物,由它的一些特殊事例或其全部可能情況,歸納出一般結(jié)論的推理方法,叫歸納法。歸納法{
2024-11-25 17:34
【摘要】§數(shù)學(xué)歸納法課時(shí)目標(biāo).2.能用數(shù)學(xué)歸納法證明一些簡單的數(shù)學(xué)命題.握數(shù)學(xué)歸納法的實(shí)質(zhì)及與歸納,猜想的關(guān)系..1.?dāng)?shù)學(xué)歸納法公理對(duì)于某些________________的數(shù)學(xué)命題,可以用數(shù)學(xué)歸納法證明.2.證明步驟對(duì)于某些與正整數(shù)有關(guān)的數(shù)學(xué)命題,如果(1)當(dāng)n________
2024-12-13 09:28
【摘要】數(shù)學(xué)歸納法及其應(yīng)用舉例數(shù)學(xué)歸納法是一種證明與正整數(shù)有關(guān)的數(shù)學(xué)命題的重要方法.主要有兩個(gè)步驟一個(gè)結(jié)論:【歸納奠基】(1)證明當(dāng)n取第一個(gè)值n0(如n0=1或2等)時(shí)結(jié)論正確(2)假設(shè)n=k(k≥n0,n∈N*)時(shí)結(jié)論正確,證明n=k+1時(shí)結(jié)論也正確(3)由(1)、(2)得出結(jié)論【歸納遞推】
2024-11-25 05:48
【摘要】第2課時(shí)微積分基本定理..1664年秋,牛頓開始研究微積分問題,他反復(fù)閱讀笛卡兒《幾何學(xué)》,對(duì)笛卡兒求切線的“圓法”產(chǎn)生了濃厚的興趣并試圖尋找更好的方法,以前,面積總是被看成是無限小不可分量之和,牛頓則從確定面積的變化率入手,通過反微分計(jì)算面積.牛頓不僅揭示了面積計(jì)算與求切線的互逆關(guān)系,而且十分
2024-12-13 06:35
【摘要】第3課時(shí)定積分的簡單應(yīng)用,并能利用積分公式表進(jìn)行計(jì)算.,建立它的數(shù)學(xué)模型,并能利用積分公式表進(jìn)行計(jì)算.,體會(huì)到微積分把不同背景的問題統(tǒng)一到一起的巨大作用和實(shí)用價(jià)值.實(shí)際生活中許多變量的變化是非均勻變化的,如非勻速直線運(yùn)動(dòng)在某時(shí)間段內(nèi)位移;變力使物體沿直線方向移動(dòng)某位移區(qū)間段內(nèi)所做的功;非均勻
2024-11-27 20:36
【摘要】(1)對(duì)于某類事物,由它的一些特殊事例或其全部可能情況,歸納出一般結(jié)論的推理方法,叫歸納法.歸納法{完全歸納法不完全歸納法由特殊一般特點(diǎn):a2=a1+da3=a1+2da4=a1+3d……an=a1+(n-1)d如何證明:1+3+5+…+(2n-1)=
2024-11-26 15:24
【摘要】第1課時(shí)導(dǎo)數(shù)與函數(shù)的單調(diào)性,直觀探索并掌握函數(shù)的單調(diào)性與導(dǎo)數(shù)的關(guān)系...對(duì)于函數(shù)y=x3-3x,如何判斷單調(diào)性呢?你能畫出該函數(shù)的圖像嗎?定義法是解決問題的最根本方法,但定義法較繁瑣,又不能畫出它的圖像,那該如何解決呢?問題1:增函數(shù)和減函數(shù)一般地,
【摘要】數(shù)學(xué)歸納法應(yīng)用舉例例1.用數(shù)學(xué)歸納法證明:2222(1)(21)1236nnnn???????證明:(1)當(dāng)n=1時(shí),左邊=1,右邊=1,等式成立;(2)假設(shè)當(dāng)n=k時(shí),等式成立,即2222(1)(21)1236kkkk???????那么
2024-11-26 01:21
【摘要】(第一課時(shí))單縣一中時(shí)克然多米諾骨牌問題情境一已知數(shù)列的通項(xiàng)公式為}{na22)55(???nnan(1)求出其前四項(xiàng),你能得到什么樣的猜想?(2)你的猜想正確嗎?對(duì)于數(shù)列{},na)1(2111????nnnaaa)∈(*Nn
2024-11-25 12:01