freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

二次函數(shù)教學(xué)反思-文庫吧資料

2024-10-24 20:25本頁面
  

【正文】 判斷拋物線對稱軸、借圖象分析函數(shù)增減性等的訓(xùn)練,另外還預(yù)想借圖象識別2a與b的關(guān)系將是本節(jié)課的一個難點(diǎn)。我覺得要想提高自己的教學(xué)水平,就要及時反思自己教學(xué)中存在的不足,在每一節(jié)課前充分預(yù)想到課堂的每一個細(xì)節(jié),想好對應(yīng)的措施,不斷提高自己的教學(xué)水平。在課堂上我運(yùn)用了小組評價,學(xué)生回答問題非常積極,可是我感到小組評價還有需要改進(jìn)的地方。所以以后要充分考慮到每一個細(xì)節(jié),要想到學(xué)生可能會出現(xiàn)什么情況。認(rèn)真考慮每一個細(xì)節(jié)。雖然也想過適當(dāng)處理,但是想到教材是一節(jié)課完成兩種函數(shù),所以還是決定兩種函數(shù)在一節(jié)課完成,事實證明一節(jié)課完成兩種函數(shù)效果不是很好。反思這一節(jié)課整個過程中的成功和不足之處,我覺得需要改進(jìn)的有如下幾點(diǎn):靈活處理教材。但是還是有一部分同學(xué)混淆了。在學(xué)習(xí)二次函數(shù)y=a(xh)2的圖象和二次函數(shù)y=ax2的圖象的`關(guān)系時,由于涉及向左或向右平移引出了加減問題,學(xué)生在此容易混淆,盡管讓學(xué)生結(jié)合圖象明確地看到在x后面如果是加就是向左平移的,反之就是向右平移,再就是在看如何平移時關(guān)鍵是看頂點(diǎn)的平移,頂點(diǎn)如何平移那么圖象就如何平移。先從復(fù)習(xí)二次函數(shù)y=ax2入手,通過檢測學(xué)生對于二次函數(shù)y=ax2的性質(zhì)掌握較好。只有真正把自主、探究、合作的學(xué)習(xí)方式落到實處,才能培養(yǎng)學(xué)生成為既有創(chuàng)新能力,又能適應(yīng)現(xiàn)代社會發(fā)展的公民。正所謂:水本無波,相蕩乃成漣漪。這很形象地說出了合作學(xué)習(xí)的好處。有這樣一種說法:你我各一個蘋果,交換之后,你我還是一個蘋果。但是綜合起來學(xué)生就困難的多了。合作學(xué)習(xí)的有效性不夠。提問一個問題,學(xué)生說了一半,我就迫不及待地引導(dǎo)他說出下一半,有的時候是我替學(xué)生說了,這樣學(xué)生的思路就被我打斷了。真正讓學(xué)生有了空間,他們也會給我們很大的驚喜。有些過程,讓學(xué)生自主觀察總結(jié)是完全能收到好的效果的,但是我都替學(xué)生總結(jié)了,學(xué)生還是被動的接受。我見到的,我會記住。有時候就是要讓學(xué)生經(jīng)歷錯誤的過程,這樣他們才會懂。作圖的過程沒必要放到課堂上來。我的不足之處表現(xiàn)在:知識的生成過程體現(xiàn)的不夠具體。教學(xué)目標(biāo)明確、思路清晰,注重學(xué)生的自我學(xué)習(xí)培養(yǎng)和小組合作學(xué)習(xí)的落實。從當(dāng)堂的反饋來看,絕大多數(shù)同學(xué)能掌握本節(jié)課的知識,達(dá)到了學(xué)習(xí)目標(biāo)中的要求。最后五分鐘時我讓學(xué)生們獨(dú)立完成課堂檢測部分題目。幾何畫板在此起到了突破難點(diǎn)的作用,讓我真正體會到了掌握幾何畫板對自己的教學(xué)是多么的有利。小組討論完畢后我讓學(xué)生展示他們的成果,大部分學(xué)生躍躍欲試,他們討論的很全面,出乎我的預(yù)料。觀察自己畫出的兩個圖象,它們代表函數(shù)y=ax^2的兩種情況,找出a的符號不同時他們的相同點(diǎn)、不同點(diǎn)和聯(lián)系點(diǎn)。應(yīng)該說探究活動二在活動一的基礎(chǔ)上讓學(xué)生鍛煉了自我學(xué)習(xí)的能力,學(xué)生們完成的很好。探究活動二是獨(dú)立畫出函數(shù)y=2x^2的圖象,然后是自主探討當(dāng)a0時函數(shù)y=ax^2的性質(zhì)。學(xué)生在我的引導(dǎo)下順利地畫出了函數(shù)的圖象。列表過程是我引導(dǎo)學(xué)生取點(diǎn)的,其間我引導(dǎo)大家要明確取點(diǎn)注意的事項,比如代表性、易操作性。探究活動一是讓學(xué)生在坐標(biāo)紙上畫出二次函數(shù)y=ax^2的圖象。應(yīng)該說這樣設(shè)計既讓初三同學(xué)復(fù)習(xí)了舊知又使他們體會到如何研究函數(shù),從哪些方面研究函數(shù),從思維層面鍛煉了學(xué)生的探究能力。整個教學(xué)過程主要分為三部分:第一部分是前置性作業(yè),前置作業(yè)是前一天發(fā)給學(xué)生的,主要涉及如何作圖、一次函數(shù)和反比例函數(shù)的性質(zhì)等問題。二次函數(shù)教學(xué)反思15這節(jié)課是人教版九年級數(shù)學(xué)下冊的一節(jié)探究課?!稊?shù)學(xué)課程標(biāo)準(zhǔn)》提出:教師不僅是學(xué)生的引導(dǎo)者,也是學(xué)生的合作者。最后,教師清楚地向?qū)W生總結(jié)每一種函數(shù)解析式的適用范圍及一般應(yīng)已知的條件。細(xì)究起來,它包涵著深層的含義:教師必須不斷豐富自己的內(nèi)涵、增強(qiáng)自己的業(yè)務(wù)技能,才能適應(yīng)教學(xué)中時刻變化的新情況,才能照亮學(xué)生成長之路中的每一個標(biāo)志。三、本節(jié)課自己的感想曾聽過這樣的一個比喻,說“教師就象用以識別地圖的圖例”。(1)、二次函數(shù)一般關(guān)系式:y=ax2+bx+c(a≠0)(2)二次函數(shù)頂點(diǎn)式:y=a(x—h)2+k對于以上這兩種函數(shù),要求學(xué)生理解關(guān)系式,及其性質(zhì)和圖象。待定系數(shù)法的基本步驟是:假設(shè)所求函數(shù)的解析式;把已知的量代入函數(shù)關(guān)系式,聯(lián)列方程(組);求出方程(組)的解。下面談?wù)劚救嗽诮虒W(xué)和復(fù)習(xí)求函數(shù)解析式的具體做法:一、使學(xué)生掌握待定系數(shù)法。求函數(shù)的解析式,應(yīng)恰當(dāng)?shù)剡x用函數(shù)解析式的形式,選擇得當(dāng),解題簡捷,若選擇不當(dāng),解題繁瑣。利用二次函數(shù)的圖像可以得到對應(yīng)一元二次方程的解、一元二次不等式的解集。但是在解決最值問題時得注意,有時理論上的最大值(或最小值)不是實際生活中的最值,得考慮實際意義。(五)建立二次函數(shù)模型。(四)二次函數(shù)的教學(xué)應(yīng)注意數(shù)形結(jié)合。(三)函數(shù)的教學(xué)應(yīng)注意自變量與函數(shù)之間的變化對應(yīng)。(二)把實際問題數(shù)學(xué)化。二次函數(shù)教學(xué)反思13二次是函數(shù)是函數(shù)中的重點(diǎn)、難點(diǎn),它比較復(fù)雜,一般來說我們研究它是先研究其本身性質(zhì)、圖象,進(jìn)而擴(kuò)展到應(yīng)用,它在現(xiàn)實中應(yīng)用較廣,我們在教學(xué)中要緊密結(jié)合實際,讓學(xué)生學(xué)有所用,在教學(xué)中應(yīng)注意以下幾個問題:(一)把握好課標(biāo)。今后備課時要重視創(chuàng)設(shè)豐富而風(fēng)趣的語言,來調(diào)動學(xué)生的積極性。雖然有部分學(xué)生尚不能熟練解決相關(guān)應(yīng)用問題,但在下面的學(xué)習(xí)中會得到補(bǔ)充和提高。在學(xué)習(xí)了二次函數(shù)的知識后,我們嘗試運(yùn)用于解決三個實際問題。二次函數(shù)中含有三個字母系數(shù),因此確定其解析式要三個獨(dú)立的條件,用待定系數(shù)法來解。通過教學(xué),讓學(xué)生對建模思想、圖形結(jié)合思想及分類討論思想都有了較清晰的認(rèn)識,學(xué)會了分析問題的初步方法。在學(xué)習(xí)過程中加強(qiáng)利用配方法將二次函數(shù)一般式化頂點(diǎn)式、判斷拋物線對稱軸、借圖象分析函數(shù)增減性等的訓(xùn)練。體驗用函數(shù)思想去描述、研究變量之間變化規(guī)律的意義。如為了幫助學(xué)生建立二次函數(shù)的概念,從學(xué)生非常熟悉的正方形的面積的研究出發(fā),通過建立函數(shù)解析式,歸納解析式特點(diǎn),給出二次函數(shù)的定義。本章的教學(xué)是我對選題有了進(jìn)一步認(rèn)識,要體現(xiàn)教學(xué)目標(biāo),要有實際意義。二次函數(shù)教學(xué)反思12在二次函數(shù)教學(xué)中,根據(jù)它在初中數(shù)學(xué)函數(shù)在教學(xué)中的地位,細(xì)心地準(zhǔn)備《二次函數(shù)》的教學(xué),教學(xué)重點(diǎn)為二次函數(shù)的圖象性質(zhì)及應(yīng)用,教學(xué)難點(diǎn)為a、b、c與二次函數(shù)的圖象的關(guān)系。一些需要思維的課堂活需要探討的課堂,我認(rèn)為應(yīng)該利用學(xué)案,不讓學(xué)生看課本,教師引導(dǎo)學(xué)生進(jìn)行探究活動,讓學(xué)生自己發(fā)現(xiàn)關(guān)系、規(guī)律。通過兩節(jié)課的對比,我發(fā)現(xiàn)數(shù)學(xué)的自主學(xué)習(xí),不能千遍一律,應(yīng)針對具體內(nèi)容采取靈活多變的方法。為此我在另一個班采取了以下的教學(xué)過程,突出以學(xué)生為主體,教師只是引導(dǎo)學(xué)生經(jīng)歷分析——觀察——抽象——概括——發(fā)現(xiàn)新知——解決新知的過程。(2)、通過觀察二次函數(shù)與x 軸交 點(diǎn)的個數(shù),討論 一元二次方程的根的情況,進(jìn)一步培養(yǎng)學(xué)生的數(shù)形結(jié)合思想.(3)、通過學(xué)生共同觀察和討論,培養(yǎng)合作交流意識.三、 情感與價值觀要求(1)、 經(jīng)歷探索二次函數(shù)與一元二次方程的關(guān)系的過程,體驗數(shù)學(xué)活動充滿著探索與創(chuàng)造,感受數(shù)學(xué)的嚴(yán)謹(jǐn)性以及數(shù)學(xué)結(jié)論的確定性.(2)、 具有初步的創(chuàng)新精神和實踐能力.教學(xué)重點(diǎn):(1).體會方程與函數(shù)之間的聯(lián)系.(2).理解何 時方程有兩個不等的實根、兩個相等的實根和沒有實根.(3).理解一元二次方程的根就是二次函數(shù)與y =h 交點(diǎn)的橫坐標(biāo).教學(xué)難點(diǎn)(1)、探索方程與函數(shù)之間的聯(lián)系的過程.(2)、理解二次函數(shù)與x 軸交點(diǎn)的個數(shù)與一元二次方程的根的個數(shù)之間的關(guān)系. 解決重難點(diǎn)的方法 設(shè)問題情境,引入新課我們已學(xué)過一元一次方程kx+b=0 (k≠0)和一次函數(shù)y =kx+b (k≠0)的關(guān)系,你還記得嗎?它們之間的關(guān)系是:當(dāng)一次函數(shù)中的函數(shù)值y =0時,一次函數(shù)y =kx+b就轉(zhuǎn)化成了一元一次方 程kx+b=0,且一次函數(shù)的圖像與x 軸交點(diǎn)的橫坐標(biāo)即為一元一次方程kx+b=0的解.現(xiàn)在我們學(xué)習(xí)了一元二次方程和二次函數(shù),它們之間是否也存在一定的關(guān)系呢?本節(jié)課我們將探索這個問題.二次函數(shù)教學(xué)反思11這節(jié)課我是采用先讓學(xué)生按照學(xué)案的提示,自主預(yù)習(xí)課本,受到課本所給出的分析過程的思維限制,很容易把問題解決了,但沒有放手讓學(xué)生從不同角度去嘗試建立坐標(biāo)系,體會各種情況下所建立的坐標(biāo)系是否有利于點(diǎn)的表示,沒有激發(fā)學(xué)生學(xué)習(xí)的熱情,沒有給予學(xué)生以啟迪。今后,我將不斷嘗試,不斷完善自身,使學(xué)生的討論和思考更有意義。本節(jié)課教師始終與學(xué)生保持著平等和相互尊重,為學(xué)生探究學(xué)習(xí)提供了前提條件。所以教師應(yīng)當(dāng)走下“教壇”,與學(xué)生在民主、平等的氛圍中交流意見,共同探討問題。通過本堂課的教學(xué),我想了很多。本堂課,我賦予學(xué)生較多的思考和交流的機(jī)會,試著讓學(xué)生成為數(shù)學(xué)學(xué)習(xí)的主人,我自己充當(dāng)了一回數(shù)學(xué)學(xué)習(xí)的組織者,沒想到取得了意想不到的效果,學(xué)生不但能用一般式,頂點(diǎn)式解決此題,還能深層挖掘巧妙地用兩根式解決此題,學(xué)生的潛力真是無窮。每一個學(xué)生都有豐富的知識體驗和生活積累,每一個學(xué)生都會有各自的思維方式和解決問題的策略。生2:我獲得了解題的能力,今后做完一道題目,我會思考還有沒有更好的方法。(學(xué)生們又挖空心思地思考起來,終于有一學(xué)生打破沉寂)生D:由于圖象過點(diǎn)(1,0),對稱軸是直線x=2,故得與x軸的另一交點(diǎn)為(3,0),所以可用兩根式設(shè)二次函數(shù)解析式為y=a(x—1)(x—3),再把(0,3)代入,得a=1,所以二次函數(shù)解析式為y=(x—1)(x—3),即y=x2—4x+3(同學(xué)們給生D以熱烈的掌聲)師:函數(shù)本身與圖形是不可分割的,能數(shù)形結(jié)合,非常不錯,用兩根式解此題,非常獨(dú)到。(學(xué)生沉默一會兒,有人舉手發(fā)言)生C:因為對稱軸是直線x=2,在y軸上的截距為3,我認(rèn)為該二次函數(shù)解析式可設(shè)為y=ax2—4ax+3,在把(1,0)代入得a—4a+3=0,解得a=1,所以所求解析式為y=x2—4x+3師:設(shè)得巧妙,這個函數(shù)解析式只含一個字母,這給運(yùn)算帶來很大方便,很好,很善于思考。(同學(xué)們開始討論,思考)生B:我認(rèn)為此題可用頂點(diǎn)式,即設(shè)二次函數(shù)解析式為y=a(x—2)2+k,把(1,0),(0,3)代入,得a+k=04a+k=3解得a=1k=—1故所求二次函數(shù)的解析式為y=(x—2)2—1,即y=x2—4x+3師:非常好。二、探究與討論問題:已知二次函數(shù)的圖象過點(diǎn)(1,0),在y軸上的截距為3,對稱軸是直線x=2,求它的函數(shù)解析式。對每一課時教學(xué)內(nèi)容可利用課前幾分鐘,大家在一起說一說自己的教學(xué)設(shè)想,有新穎活潑緊扣教學(xué)內(nèi)容而又容易操作的形式,取長補(bǔ)短相互借總之,在實踐中獲得靈感,在交流中撞出智慧,在反思中調(diào)整思路,在堅持中取得進(jìn)步。加強(qiáng)教學(xué)研究,促進(jìn)教師間的經(jīng)驗交流和相互協(xié)作,達(dá)到共同提高的目的。而多數(shù)老師在課堂上覺得這樣讓學(xué)生動手去做太耽誤時間,不如我自己演示來的快。手是腦的老師,說過百遍,不如手做一遍。有人曾經(jīng)說過:“聽了,一會兒就忘了;看了,就記住了;動手操作了,就理解了。活動設(shè)計要緊緊圍繞課時教學(xué)內(nèi)容的重點(diǎn),而且要確立一條的主線,用這一根線把各個環(huán)節(jié)串起來,使課堂教學(xué)形成一個有機(jī)的整體,流暢自然中蘊(yùn)涵著和諧與統(tǒng)一。讓學(xué)生在熟悉的情境中復(fù)習(xí)數(shù)學(xué),理解數(shù)學(xué)。老師沒講清楚學(xué)生聽不明白就會出現(xiàn)課堂亂哄哄的低效現(xiàn)象,要做到既能放得出又能收得回。課堂上采用多種形式的活動組織教學(xué),激發(fā)學(xué)生的學(xué)習(xí)興趣,以取得更好的學(xué)習(xí)效果,是非常有必要的。因此精心設(shè)計教學(xué)環(huán)節(jié)組織好課堂教學(xué)活動是一項非常重要的工作。精心設(shè)計教學(xué)環(huán)節(jié),組織調(diào)控好課堂活動。在研究教材的同時研究學(xué)生學(xué)習(xí)的基礎(chǔ)和學(xué)習(xí)的困難,找最佳突破口,使學(xué)生在輕松愉悅的學(xué)習(xí)氛圍下經(jīng)歷學(xué)習(xí)過程。有句話說的好“教材鉆的有多透有多深,教學(xué)方法就有多新有多活”。通過本節(jié)課的復(fù)習(xí)。,相信學(xué)生,依靠學(xué)生的“主體”教學(xué)思想,運(yùn)用助思,助學(xué),助練的啟發(fā)式教學(xué)方法,啟動了師生交流的“匣門”,使教學(xué)過程真正成為了師生間的雙向活動 。將第(3)題留為課后作業(yè),來了個將錯就錯,為下一節(jié)課復(fù)習(xí)“二次函數(shù)與二元一次方程”的關(guān)系巧作鋪墊。本節(jié)通過建立函數(shù)體系回憶了二次函數(shù)的定義,其圖象與性質(zhì)及與一次、反比例函數(shù)圖象的綜合應(yīng)用,相繼進(jìn)行,但此環(huán)節(jié)中“2a與b的關(guān)系”學(xué)生沒有提到,迫于突破此難點(diǎn),我讓學(xué)生觀察課例圖象,并進(jìn)一步引導(dǎo)觀察對稱軸的具體位置后,僅有十幾個學(xué)生準(zhǔn)確理解、掌握,于是我進(jìn)一步的分析“2a與b的關(guān)系”由對稱軸的具體位置決定,并說明由a>0與b>0能推導(dǎo)出2a+b>0的方法僅適于此題,但效果不盡人意,仍有一部分學(xué)生應(yīng)用此法解決相關(guān)問題。我們今天復(fù)習(xí)了二次函數(shù),立足于二次函數(shù)在初中數(shù)學(xué)函數(shù)教學(xué)中的地位,根據(jù)學(xué)生對二次函數(shù)的學(xué)習(xí)及掌握的情況,從梳理知識點(diǎn)出發(fā)采用以習(xí)題帶知識點(diǎn)的形式,我精心準(zhǔn)備了《二次函數(shù)》的第一節(jié)復(fù)習(xí)課,教學(xué)重點(diǎn)為二次函數(shù)的圖象性質(zhì)及應(yīng)用。事實證明學(xué)生的思維真的是非?;钴S的,你要你給了足夠的空間,他們總能從各方各面進(jìn)行思考和解釋,我也從中看到了他們智慧的火花,這是很令人欣慰的。單元備課后發(fā)現(xiàn),我們其實對二次函數(shù)的最值問題是不講的,但是不講并不代表一點(diǎn)都不會涉及到,其中用到的思想方法還是相當(dāng)重要的,在圖象的觀察中也具有了重要的地位,再加上這個問題在進(jìn)行了前面的實際問題的解答之后是呼之欲出的:多種樹——想提高產(chǎn)量——多種幾棵好呢?,所以我設(shè)計了這個探索性的問題:假如你是果園的主人,你準(zhǔn)備多種幾棵?注意這里我并沒有提出最大最小值的問題,但是所有的學(xué)生都能理解到,這是數(shù)學(xué)的魅力。對于練習(xí)的設(shè)計,仍然采取了不重復(fù)的原則性,盡量做到每題針對一個問題,并進(jìn)行及時的小結(jié),也遵循了從開放到封閉的原則,達(dá)到了良好的效果。但是如果光從這些知識點(diǎn)上來講這節(jié)課,其實很簡單,學(xué)生在原有知識的儲備基礎(chǔ)上很容易遷移和接受這些知識,那么這節(jié)課還有什么好設(shè)計的呢?重新思索教材的編寫意圖,發(fā)現(xiàn)課本這部分內(nèi)容大部分篇幅是在講三個實際問題,由此引出了二次函數(shù),我才意識其實這節(jié)課的重點(diǎn)實際上應(yīng)該放在“經(jīng)歷探索和表示二次函數(shù)關(guān)系的過程,獲得用二次函數(shù)表示變量之間關(guān)系的體驗,從而形成定義”上,有了這個認(rèn)識,一切變得簡單了!整節(jié)課的流程可以這樣概括:學(xué)生感興趣的簡單實際問題——引出學(xué)過的一次函數(shù)——復(fù)習(xí)學(xué)過的所有函數(shù)形式——設(shè)問:有沒有新的函數(shù)形式呢?
點(diǎn)擊復(fù)制文檔內(nèi)容
環(huán)評公示相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1