【摘要】兩角和與差的正弦公式【學(xué)習目標】1、掌握兩角和與差的正弦公式及其推導(dǎo)方法。2、通過公式的推導(dǎo),了解它們的內(nèi)在聯(lián)系,培養(yǎng)邏輯推理能力。并運用進行簡單的三角函數(shù)式的化簡、求值和恒等變形。3、掌握誘導(dǎo)公式sin=cosα,sin=cosα,si
2024-11-28 01:05
【摘要】兩角和與差的余弦公式【學(xué)習目標】1、理解向量法推導(dǎo)兩角和與差的余弦公式,并能初步運用解決具體問題;2、應(yīng)用公C)(???式,求三角函數(shù)值.3、培養(yǎng)探索和創(chuàng)新的能力和意見.【學(xué)習重點難點】向量法推導(dǎo)兩角和與差的余弦公式【學(xué)習過程】(一)預(yù)習指導(dǎo)探究cos(α+β)≠cosα+cosβ
【摘要】課題:兩角和與差的正切(2)班級:姓名:學(xué)號:第學(xué)習小組【學(xué)習目標】,化簡及證明三角恒等式;。【課前預(yù)習】1、若??tantan?,是方程0382???xx的兩根,且??,為銳角,則??)cos(??2、若????
2024-12-13 10:15
【摘要】兩角差的余弦公式教學(xué)目的:經(jīng)歷用向量數(shù)量積推導(dǎo)出兩角差的余弦公式的過程,進一步體會向量方法的作用;掌握兩角差的余弦公式的結(jié)構(gòu)特征,并會應(yīng)用。教學(xué)重點:兩角差的余弦公式結(jié)構(gòu)及其應(yīng)用教學(xué)難點:兩角差的余弦公式的推導(dǎo)。教學(xué)過程一、新課引入課本P136的問題二、新課[1、問題的提出co
2024-12-16 22:40
【摘要】19:29:2419:29:24一、新課引入問題1:cos15°=?問題2:cos15°=cos(45°-30°)=cos45°-cos30°?cos30°=cos(90°-60°)=cos
2024-11-25 19:44
【摘要】課題:兩角和與差的正切(1)班級:姓名:學(xué)號:第學(xué)習小組【學(xué)習目標】(差)的正切公式的推導(dǎo)過程;(差)的正切公式進行簡單三角函數(shù)式的化簡,求值和證明?!菊n前預(yù)習】1、求?15tan的值。2、兩角和的正切公式的推導(dǎo):
2024-11-27 21:43
【摘要】第3章三角恒等變換兩角和與差的三角函數(shù)兩角和與差的余弦一、填空題1.cos15°的值是________.2.若cos(α-β)=13,則(sinα+sinβ)2+(cosα+cosβ)2=________.3.已知α、β均為銳角,且sinα=55,cosβ
【摘要】兩角和與差的正弦一、填空題1.sin245°sin125°+sin155°sin35°的值是________.2.若銳角α、β滿足cosα=45,cos(α+β)=35,則sinβ的值是________.3.已知cosαcosβ-sinαsin
【摘要】兩角和與差的余弦一、知識掃描cos(α-β)=二、課堂探究1.探究?coscos)cos(???????2.探究cos(???)的公式思考?.1角函數(shù)線來探求公式怎樣聯(lián)系單位圓上的三(1)怎樣構(gòu)造角?和角????(注意:要與它們
2024-12-10 10:14
【摘要】第3章三角恒等變換3.1兩角和與差的三角函數(shù)3.兩角和與差的余弦思考:cos(α-β)=?有人認為cos(α-β)=cosα-cosβ,對不對?令α=π3,β=-π6,則cos(α-β)=cosπ2=0,cosα-cosβ=cosπ3-
【摘要】a·b=|a||b|cosθ向量數(shù)量積的定義是?向量與自身的內(nèi)積為?兩個單位向量的數(shù)量積等于?向量長度的平方它們之間夾角的余弦函數(shù)值思考?yxoP1βP2α在直角坐標系中,以原點為中心,單位長度為半徑作單位圓,以原點為頂點,x軸為始邊分別作角任意α,β與單位圓交于
2024-11-25 15:05
【摘要】、余弦、正切公式2020、12、24一、復(fù)習:?)cos(????C)(???簡記:兩角差的余弦公式??)cos(??????sinsincoscos?同名積,符號反。二、公式的推導(dǎo)??)cos(??)](cos[???????
2024-11-26 12:17
2024-12-17 03:40
【摘要】數(shù)學(xué):“兩角差的余弦公式”教學(xué)設(shè)計一、教學(xué)內(nèi)容解析三角恒等變換處于三角函數(shù)與數(shù)學(xué)變換的結(jié)合點和交匯點上,是前面所學(xué)三角函數(shù)知識的繼續(xù)與發(fā)展,是培養(yǎng)學(xué)生推理能力和運算能力的重要素材.兩角差的余弦公式是《三角恒等變換》這一章的基礎(chǔ)和出發(fā)點,公式的發(fā)現(xiàn)和證明是本節(jié)課的重點,也是難點.由于和與差內(nèi)在的聯(lián)系性與統(tǒng)一性,我們可以
2024-11-26 21:26
【摘要】3.兩角和與差的正弦上一節(jié)我們研究了兩角和與差的余弦,一個自然的想法是兩角和與差的正弦等于什么?即sin(α±β)=?本節(jié)我們就探索這樣的問題,并加以應(yīng)用.1.兩角差的正弦公式____________________________________,這個公式對任意α、β都成立.答案:sin(α