freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

20xx數(shù)學(xué)分析考點-文庫吧資料

2024-10-13 05:49本頁面
  

【正文】 教學(xué)。二、教學(xué)重點:二重積分的變量變換。214二重積分的變量變換一、教學(xué)目的:;。八、作業(yè):P231習(xí)題1,2,3,4,5,6,8。l 補充例子:利用二重積分計算曲線積分。四、教學(xué)方法:多媒體、問題討論與黑板講解穿插教學(xué)。二、教學(xué)重點:格林公式的理解和方法。課時教學(xué)計劃(教案214)課題:167。七、課程小結(jié):(約5min,黑板講解)二重積分的定義;二重積分性質(zhì);二重積分的計算。五、教學(xué)用具:黑板、CAI課件及硬件支持六、教學(xué)過程:l 二重積分的概念與性質(zhì)(約95min,投影、圖示與黑板講解)1.二重積分的概念復(fù)習(xí); 2.二重積分的性質(zhì)復(fù)習(xí)。三、教學(xué)難點:直角坐標(biāo)系下二重積分的計算方法。2.鞏固在直角坐標(biāo)系下二重積分的計算方法。八、作業(yè):P222習(xí)題1,2,3,4,5,6,8。l ,lX型、l 直角坐標(biāo)系下二重積分的計算舉例教材中例1—例4。四、教學(xué)方法:多媒體、問題討論與黑板講解穿插教學(xué)。二、教學(xué)重點:直角坐標(biāo)系下二重積分的計算方法。課時教學(xué)計劃(教案212)課題:167。七、課程小結(jié):(約5min,黑板講解)二重積分的定義;二重積分性質(zhì)。二重積分的性質(zhì)(約25min,圖示與黑板講解)結(jié)合二重積分的定義講解二重積分的7條性質(zhì)。五、教學(xué)用具:黑板、CAI課件及硬件支持六、教學(xué)過程:[引例]:(約5min,語言表述)由平面圖形的面積和曲頂柱體的體積引出二重積分的概念。三、教學(xué)難點:二重積分的定義;二重積分的存在性。2.理解二重積分的7條性質(zhì)。第四篇:數(shù)學(xué)分析教案《數(shù)學(xué)分析Ⅲ》教案編寫目錄(1—16周,96學(xué)時)課時教學(xué)計劃(教案211)課題:167?!稊?shù)學(xué)分析中的典型問題與方法》,裴禮文,高等教育出版社,1993年。要求:掌握兩類曲線積分與曲面積分的概念、性質(zhì)及計算;了解兩類曲線積分的關(guān)系和兩類曲面積分的關(guān)系;熟練掌握格林公式的證明及其應(yīng)用,會利用高斯公式、斯托克斯公式計算一些曲面積分與曲線積分;了解場論的初步知識。(二十)曲線積分與曲面積分第一型曲線積分的概念、性質(zhì)與計算,第一型曲面積分的的概念、性質(zhì)與計算;第二型曲線積分的概念、性質(zhì)與計算,變力作功,兩類曲線積分的聯(lián)系;格林公式,曲線積分與路線的無關(guān)性, 全函數(shù);曲面的側(cè),第二型曲面積分概念及性質(zhì)與計算,兩類曲面積分的關(guān)系。(十九)重積分二重積分概念:二重積分的概念,可積條件,可積函數(shù),二重積分的性質(zhì);二重積分的計算:化二重積分為累次積分,換元法(極坐標(biāo)變換,一般變換);含參變量的積分;三重積分計算:化三重積分為累次積分, 換元法(一般變換,柱面坐標(biāo)變換,球坐標(biāo)變換);重積分應(yīng)用:立體體積,曲面的面積,物體的重心,轉(zhuǎn)動慣量;含參量非正常積分概念及其一致斂性:含參變量非正常積分及其一致收斂性概念,一致收斂的判別法(柯西準(zhǔn)則,與函數(shù)項級數(shù)一致收斂性的關(guān)系,一致收斂的M判別法),含參變量非正常積分的分析性質(zhì);歐拉積分:格馬函數(shù)及其性質(zhì),貝塔函數(shù)及其性質(zhì)。(十八)隱函數(shù)定理及其應(yīng)用隱函數(shù):隱函數(shù)的概念,隱函數(shù)的定理,隱函數(shù)求導(dǎo)舉例;隱函數(shù)組:隱函數(shù)組存在定理,反函數(shù)組與坐標(biāo)變換,雅可比行列式;幾何應(yīng)用:平面曲線的切線與法線,空間曲線的切線與法平面,曲面的切平面和法線;條件極值:條件極值的概念,條件極值的必要條件。(十七)多元函數(shù)的微分學(xué)可微性:偏導(dǎo)數(shù)的概念,偏導(dǎo)數(shù)的幾何意義,偏導(dǎo)數(shù)與連續(xù)性;全微分概念;連續(xù)性與可微性,偏導(dǎo)數(shù)與可微性;多元復(fù)合函數(shù)微分法及求導(dǎo)公式;方向?qū)?shù)與梯度;泰勒定理與極值。(十六)多元函數(shù)極限與連續(xù)平面點集與多元函數(shù)的概念;二元函數(shù)的極限、累次極限;二元函數(shù)的連續(xù)性:二元函數(shù)的連續(xù)性概念、連續(xù)函數(shù)的局部性質(zhì)及初等函數(shù)連續(xù)性。要求:了解冪級數(shù),函數(shù)的冪級數(shù)及函數(shù)的可展成冪級數(shù)等概念;掌握冪級數(shù)的性質(zhì);會求冪級數(shù)的收斂半徑與一些冪級數(shù)的收斂域;會把一些函數(shù)展開成冪級數(shù),包括會用間接展開法求函數(shù)的泰勒展開式(十五)付里葉級數(shù)付里葉級數(shù):三角函數(shù)與正交函數(shù)系, 付里葉級數(shù)與傅里葉系數(shù), 以2p 為周期函數(shù)的付里葉級數(shù), 收斂定理;以2L為周期的付里葉級數(shù);收斂定理的證明。要求:掌握收斂域、極限函數(shù)與和函數(shù)一致斂等概念;掌握極限函數(shù)與和函數(shù)的分析性質(zhì)(會證明);能夠比較熟練地判斷一些函數(shù)項級數(shù)與函數(shù)列的一致收斂。要求:理解無窮級數(shù)的收斂、發(fā)散、絕對收斂與條件收斂等概念;掌握收斂級數(shù)的性質(zhì);能夠應(yīng)用正項級數(shù)與任意項級數(shù)的斂散性判別法判斷級數(shù)的斂散性;熟悉幾何級數(shù)調(diào)和級數(shù)與p級數(shù)。要求:重點掌握定積分的幾何應(yīng)用;掌握定積分在物理上的應(yīng)用;在理解并掌握“微元法”。掌握廣義積分的收斂、發(fā)散、絕對收斂與條件收斂等概念;能用收斂性判別法判斷某些廣義積分的收斂性。(十)定積分定積分的概念:概念的引入、黎曼積分定義,函數(shù)可積的必要條件;可積性條件:可積的必要條件和充要條件,達(dá)布上和與達(dá)布下和,可積函數(shù)類(連續(xù)函數(shù),只有有限個間斷點的有界函數(shù),單調(diào)函數(shù));微積分學(xué)基本定理:可變上限積分,牛頓萊布尼茲公式;非正常積分:無窮積分收斂與發(fā)散的概念,審斂法(柯西準(zhǔn)則,比較法,狄利克雷與阿貝爾判別法);瑕積分的收斂與發(fā)散的概念,收斂判別法。要求:了解實數(shù)連續(xù)性的幾個定理和閉區(qū)間上連續(xù)函數(shù)的性質(zhì)的證明;理解聚點的概念,上、下極限的概念。要求:掌握中值定理的內(nèi)容、證明及其應(yīng)用;了解泰勒公式及在近似計算中的應(yīng)用,能夠把某些函數(shù)按泰勒公式展開;能熟練地運用羅必達(dá)法則求不定式的極限(七)導(dǎo)數(shù)的應(yīng)用函數(shù)的單調(diào)性與極值;:了解和掌握函數(shù)的某些特性(單調(diào)性、極值與最值、凹凸性、拐點)及其判斷方法,能利用函數(shù)的特性解決相關(guān)的實際問題。要求:理解和掌握導(dǎo)數(shù)與微分概念,了解它的幾何意義;能熟練地運用導(dǎo)數(shù)的運算性質(zhì)和求導(dǎo)法則求函數(shù)的導(dǎo)數(shù);理解單側(cè)導(dǎo)數(shù)、可導(dǎo)性與連續(xù)性的關(guān)系,高階導(dǎo)數(shù)的求法;了解導(dǎo)數(shù)的幾何應(yīng)用,微分在近似計算中的應(yīng)用。要求:理解與掌握一元函數(shù)連續(xù)性、一致連續(xù)性的定義及其證明,理解與掌握函數(shù)間斷點及其分類,連續(xù)函數(shù)的局部性質(zhì);理解單側(cè)連續(xù)的概念;能正確敘述和簡單應(yīng)用閉區(qū)間上連續(xù)函數(shù)的性質(zhì);了解反函數(shù)的連續(xù)性,理解復(fù)合函數(shù)的連續(xù)性,初等函數(shù)的連續(xù)性。要求:理解和掌握函數(shù)極限的概念;掌握并能應(yīng)用ed, eX語言處理極限問題;了解函數(shù)的單側(cè)極限,函數(shù)極限的柯西準(zhǔn)則;掌握函數(shù)極限的性質(zhì)和歸結(jié)原則;熟練掌握兩個重要極限來處理極限問題。
點擊復(fù)制文檔內(nèi)容
數(shù)學(xué)相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1