【摘要】函數(shù)值域求法十一種1.直接觀察法對于一些比較簡單的函數(shù),其值域可通過觀察得到。例1.求函數(shù)的值域。解:∵∴顯然函數(shù)的值域是:例2.求函數(shù)的值域。解:∵故函數(shù)的值域是:2.配方法配方法是求二次函數(shù)值域最基本的方法之一。例3.求函數(shù)的值域。解:將函數(shù)配方得:∵由二次函數(shù)的性質可知:當x=1時,,當時,故
2025-05-22 01:41
【摘要】完美WORD格式函數(shù)值域的求法大全題型一 求函數(shù)值:特別是分段函數(shù)求值例1 已知f(x)=(x∈R,且x≠-1),g(x)=x2+2(x∈R).(1)求f(2),g(2)的值;(2)求f[g(3)]的值.解 (1)∵f(x)=,∴f(2)==.又∵g(x)=
2025-05-19 23:00
【摘要】《函數(shù)值域的常用求法》發(fā)表在《學習報》2010-2011第2期總第1114期第2版2010年7月9日國內統(tǒng)一刊號CN14-00708/(F)郵發(fā)代碼:21-79函數(shù)值域的常用求法特級教師王新敞函數(shù)的值域是由其對應法則和定義域共同決定的.求函數(shù)值域的類型依解析式的特點分可分三類:(1)求常見函數(shù)值域;(2)求由常見函數(shù)復合而成的函數(shù)的值域;(3)求由常見函數(shù)作某些“運算”而
2025-05-22 03:41
【摘要】函數(shù)值域的求法大全題型一 求函數(shù)值:特別是分段函數(shù)求值例1 已知f(x)=(x∈R,且x≠-1),g(x)=x2+2(x∈R).(1)求f(2),g(2)的值;(2)求f[g(3)]的值.解 (1)∵f(x)=,∴f(2)==.又∵g(x)=x2+2,∴g(2)=22+2=6.(2)∵g(3)=32+2=11,∴f[g(3)]=f(11)==.反思與感悟
【摘要】考點掃描:函數(shù)是高中數(shù)學重要的基礎知識,高考試題中始終貫穿考查函數(shù)概念及其性質這一主線。特別是函數(shù)的三要素,反函數(shù),函數(shù)的奇偶性、單調性、周期性、對稱性以及函數(shù)最值等有關性質已經(jīng)成為高考經(jīng)久不衰的命題熱點,而且??汲P?,根據(jù)對近年來高考試題的分析研究,函數(shù)綜合問題呈現(xiàn)以下幾個特點:1、考查函數(shù)概念、邏輯推理能力和必要的數(shù)學解題思想方法。2
2025-05-12 08:06
【摘要】難點6函數(shù)值域及求法,并會用函數(shù)的值域解決實際應用問題.●難點磁場(★★★★★)設m是實數(shù),記M={m|m1},f(x)=log3(x2-4mx+4m2+m+).(1)證明:當m∈M時,f(x)對所有實數(shù)都有意義;反之,若f(x)對所有實數(shù)x都有意義,則m∈M.(2)當m∈M時,求函數(shù)f(x)的最小值.(3)求證:對每個m∈M,函數(shù)f(x)的最小值都不小于1.
2025-05-22 01:45
【摘要】函數(shù)值域復習--日期函數(shù)值域求法十一種在函數(shù)的三要素中,定義域和值域起決定作用,而值域是由定義域和對應法則共同確定。研究函數(shù)的值域,不但要重視對應法則的作用,而且還要特別重視定義域對值域的制約作用。確定函數(shù)的值域是研究函數(shù)不可缺少的重要一環(huán)。對于如何求函數(shù)的值域,是學生感到頭痛的問題,它所涉及到的知識面廣,方法靈活多樣,在高考中經(jīng)常出現(xiàn),占有一定的地位,若方法運用適當,就能起到簡化運
【摘要】含根式函數(shù)值域的幾何求法函數(shù)值域和最大值、最小值問題是高中數(shù)學中重要的問題,其求解的方法很多,常見的解法有:觀察法、配方法、均值不等式法、反函數(shù)法、換元法、判別式法、單調函數(shù)法、圖解法等。其中,利用數(shù)形結合來求函數(shù)的值域,尤其是含根式函數(shù)的值域,具有其獨特的效果,它能夠把滿足題意的幾何圖形畫出來,生動形象的直觀圖,提示和啟發(fā)我們的解題思路,有時,圖形式直接提供了我們尋求的答案,因此,幾何
2025-06-25 07:31
【摘要】1.直接觀察法對于一些比較簡單的函數(shù),通過對函數(shù)定義域、性質的觀察,結合函數(shù)的解析式,求得函數(shù)的值域例1.求函數(shù)的值域。解:∵?∴顯然函數(shù)的值域是:2.配方法?配方法是求二次函數(shù)值域最基本的方法之一。例2.求函數(shù)的值域。解:將函數(shù)配方得:∵由二次函數(shù)的性質可知:當x=1時,,當x=-1時,故函數(shù)的值域是:[4,8]
2025-05-22 01:57
【摘要】高中函數(shù)值域的求法題型一 求函數(shù)值:特別是分段函數(shù)求值例1 已知f(x)=(x∈R,且x≠-1),g(x)=x2+2(x∈R).(1)求f(2),g(2)的值;(2)求f[g(3)]的值.解 (1)∵f(x)=,∴f(2)==.又∵g(x)=x2+2,∴g(2)=22+2=6.(2)∵g(3)=32+2=11,∴f[g(3)]=f(11)==.反思與感悟
2025-07-01 04:51
【摘要】完美WORD格式資料高中函數(shù)值域的求法題型一 求函數(shù)值:特別是分段函數(shù)求值例1 已知f(x)=(x∈R,且x≠-1),g(x)=x2+2(x∈R).(1)求f(2),g(2)的值;(2)求f[g(3)]的值.解 (1)∵f(x)=,∴f(2)==
2025-07-02 03:30
【摘要】南莫中學萬金圣求函數(shù)值域(最值)的常見方法有哪些?基礎練習1.()基礎練習的最值是發(fā)散思維的最值.有界判別數(shù)1形數(shù)2形發(fā)散思維的值域.解:-------------------------
2024-11-14 13:41
【摘要】......函數(shù)值域求法十一種1.直接觀察法對于一些比較簡單的函數(shù),其值域可通過觀察得到。例1.求函數(shù)的值域。解:∵∴顯然函數(shù)的值域是:例2.求函數(shù)的值域。解:∵故函數(shù)的
2025-05-22 01:59
【摘要】抽象函數(shù)與具體函數(shù)值域的求法例1已知函數(shù)f(x)對任意實數(shù)x、y均有f(x+y)=f(x)+f(y),且當x0時,f(x)0,f(-1)=-2求f(x)在區(qū)間[-2,1]上的值域.分析:先證明函數(shù)f(x)在R上是增函數(shù)(注意到f(x2)=f[(x2-x1)+x1]=f(x2-x1)+f(x1));再根據(jù)區(qū)間求其值域.例2已知函數(shù)f(x)對任意實數(shù)x、y均有f
2025-05-22 04:53
【摘要】精品資源難點6函數(shù)值域及求法,并會用函數(shù)的值域解決實際應用問題.●難點磁場(★★★★★)設m是實數(shù),記M={m|m1},f(x)=log3(x2-4mx+4m2+m+).(1)證明:當m∈M時,f(x)對所有實數(shù)都有意義;反之,若f(x)對所有實數(shù)x都有意義,則m∈M.(2)當m∈M時,求函數(shù)f(x)的最小值.(3)求證:對每個m∈M,函數(shù)f(x)的最小值
2025-06-29 15:01