【摘要】-導(dǎo)數(shù)1、平均變化率一般的,函數(shù)在區(qū)間上的平均變化率為)(xf][21,xx2121)()(xxxfxf??2、平均變化率是曲線陡峭程度的“數(shù)量化”,是一種粗略的刻畫練習(xí)1、已知函數(shù)分別計(jì)算在下列區(qū)間上
2024-11-25 20:20
【摘要】常見函數(shù)的導(dǎo)數(shù)(2)一、復(fù)習(xí)公式一:=0(C為常數(shù))C?公式二:)()(1是常數(shù)???????xx公式三:公式四:xxcos)(sin??xxsin)(cos???公式五:指數(shù)函數(shù)的導(dǎo)數(shù)(2)().xxee??(1)()ln(0,1)
2024-11-27 13:11
【摘要】-導(dǎo)數(shù)瞬時(shí)速度和瞬時(shí)加速度PQoxyy=f(x)(1)如何求割線的斜率?xxfxxfxxxxfxxfkPQ????????????)()()()()(復(fù)習(xí)回顧:PQoxyy=f(x)割線切線T(2)如何求切
2024-11-25 11:00
【摘要】導(dǎo)數(shù)在實(shí)際生活中的應(yīng)用新課引入:導(dǎo)數(shù)在實(shí)際生活中有著廣泛的應(yīng)用,利用導(dǎo)數(shù)求最值的方法,可以求出實(shí)際生活中的某些最值問題..(面積和體積等的最值)(利潤方面最值)(功和功率等最值)例1:在邊長為60cm的正方形鐵片的四角切去相等的正方形,再把它的邊沿虛線折起(如圖),做成一個(gè)無
【摘要】?函數(shù)的和、差、積、商的導(dǎo)數(shù)為常數(shù))????(x)x)(2(1'??1)a0,lna(aa)a)(3(x'x???且1)a,0a(xlna1)xlog)(4('a???且sinx(8)(cosx)
【摘要】變化率問題問題1氣球膨脹率在吹氣球的過程中,可發(fā)現(xiàn),隨著氣球內(nèi)空氣容量的增加,氣球的半徑增加得越來越慢.從數(shù)學(xué)的角度,如何描述這種現(xiàn)象呢?氣球的體積V(單位:L)與半徑r(單位:dm)之間的函數(shù)關(guān)系是.34)(V3rr??若將半徑r表示為體積V的函數(shù),那么.4V
2024-11-30 01:33
【摘要】021x(天)y(千張)311164BACD下面是某市2020年3月18日至4月20日每天最高氣溫變化的曲線圖.t(d)2034102030B(32,)C(34,)T(℃)10(注:3月18日為第一天)1
2024-11-26 08:47
【摘要】一、復(fù)習(xí)幾何意義:曲線在某點(diǎn)處的切線的斜率;(瞬時(shí)速度或瞬時(shí)加速度)物理意義:物體在某一時(shí)刻的瞬時(shí)度。2、由定義求導(dǎo)數(shù)(三步法)步驟:);()()1(xfxxfy?????求增量;)()()2(xxfxxfxy???????算比值)(,0)3(xfxyx????
2024-11-25 15:21
【摘要】江蘇省建陵高級中學(xué)2021-2021學(xué)年高中數(shù)學(xué)導(dǎo)數(shù)概念導(dǎo)學(xué)案(無答案)蘇教版選修1-1【學(xué)習(xí)任務(wù)】1.了解導(dǎo)數(shù)的概念.2.掌握用導(dǎo)數(shù)的定義求導(dǎo)數(shù)的一般方法.3.在了解導(dǎo)數(shù)與幾何意義的基礎(chǔ)上,加深對導(dǎo)數(shù)概念的理解.【課前預(yù)習(xí)】1、函數(shù)223yxx??在3x?時(shí)的導(dǎo)數(shù)為,在
2024-12-12 18:01
【摘要】1、求函數(shù)在某點(diǎn)的切線方程2、判斷單調(diào)性、求單調(diào)區(qū)間3、求函數(shù)的極值4、求函數(shù)的最值…導(dǎo)數(shù)主要有哪些方面的應(yīng)用?應(yīng)用一、判斷單調(diào)性、求單調(diào)區(qū)間函數(shù)的導(dǎo)數(shù)與函數(shù)的單調(diào)性之間的關(guān)系?判斷函數(shù)單調(diào)性的常用方法:(1)定義法(2)導(dǎo)數(shù)法1)如果在某區(qū)
2024-11-26 08:56
【摘要】導(dǎo)數(shù)的概念同步練習(xí)1.函數(shù)y=f(x)在x=x0處可導(dǎo)是它在x=x0處連續(xù)的A.充分不必要條件B.必要不充分條件C.充要條件D.既不充分也不必要條件2.在曲線y=2x2-1的圖象上取一點(diǎn)(1,1)及鄰近一點(diǎn)(1+Δx,1+Δy),則xy??等于A.4Δx+2Δx2B.4+2Δx
2024-11-23 11:50
【摘要】復(fù)習(xí)引入:問題1:怎樣利用函數(shù)單調(diào)性的定義來討論其在定義域的單調(diào)性1.一般地,對于給定區(qū)間上的函數(shù)f(x),如果對于屬于這個(gè)區(qū)間的任意兩個(gè)自變量的值x1,x2,當(dāng)x1x2時(shí),(1)若f(x1)f(x2),那么f(x)在這個(gè)區(qū)間上是增函數(shù).即x1-x2與f(x1)-f(x2)同號,即.00
2024-11-25 23:31
【摘要】常見函數(shù)的導(dǎo)數(shù)教學(xué)過程Ⅰ.課題導(dǎo)入[師]我們上一節(jié)課學(xué)習(xí)了導(dǎo)數(shù)的概念,導(dǎo)數(shù)的幾何意義.我們是用極限來定義函數(shù)的導(dǎo)數(shù)的,我們這節(jié)課來求幾種常見函數(shù)的導(dǎo)數(shù).以后可以把它們當(dāng)作直接的結(jié)論來用.Ⅱ.講授新課[師]請幾位同學(xué)上來用導(dǎo)數(shù)的定義求函數(shù)的導(dǎo)數(shù).=C(C是常數(shù)),求y′.[學(xué)生板演]解:y=f(x)=C,∴
2024-11-27 19:51