【摘要】?函數(shù)的和、差、積、商的導數(shù)為常數(shù))????(x)x)(2(1'??1)a0,lna(aa)a)(3(x'x???且1)a,0a(xlna1)xlog)(4('a???且sinx(8)(cosx)
2024-11-26 08:47
【摘要】幾種常見函數(shù)的導數(shù)求函數(shù)的導數(shù)的方法是:00(1)()();yfxxfx?????求函數(shù)的增量00(2):()();fxxfxyxx???????求函數(shù)的增量與自變量的增量的比值0(3)()lim.xyyfxx
2024-11-25 23:34
【摘要】常見函數(shù)的導數(shù)一、填空題1.與直線2x-y+4=0平行的拋物線y=x2的切線方程是________.2.曲線y=x3在點(1,1)處的切線與x軸、直線x=2所圍成的三角形的面積為________.3.已知f(x)=xα,若f′(-1)=-4,則α的值等于________.4.質點的運動方程是s=t
2024-12-13 03:04
【摘要】常見函數(shù)的導數(shù)教學目標:掌握初等函數(shù)的求導公式;教學重難點:用定義推導常見函數(shù)的導數(shù)公式.一、復習1、導數(shù)的定義;2、導數(shù)的幾何意義;3、導函數(shù)的定義;4、求函數(shù)的導數(shù)的流程圖。(1)求函數(shù)的改變量)()(xfxxfy?????奎屯王新敞新疆(2)求平均變化率xxfxxfxy????
2024-12-17 04:43
【摘要】《導數(shù)運算法則》教學目標?熟練運用導數(shù)的四則運算法則,并能靈活運用?教學重點:熟練運用導數(shù)的四則運算法則?教學難點:商的導數(shù)的運用我們今后可以直接使用的基本初等函數(shù)的導數(shù)公式11.(),'()0;2.(),'();3.()sin,'()
2024-11-26 12:15
【摘要】1、求函數(shù)在某點的切線方程2、判斷單調性、求單調區(qū)間3、求函數(shù)的極值4、求函數(shù)的最值…導數(shù)主要有哪些方面的應用?應用一、判斷單調性、求單調區(qū)間函數(shù)的導數(shù)與函數(shù)的單調性之間的關系?判斷函數(shù)單調性的常用方法:(1)定義法(2)導數(shù)法1)如果在某區(qū)
2024-11-26 08:56
【摘要】【課堂新坐標】(教師用書)2021-2021學年高中數(shù)學常見函數(shù)的導數(shù)課后知能檢測蘇教版選修1-1一、填空題1.已知f(x)=1x3,則f′(1)=________.【解析】∵f(x)=1x3=x-3,∴f′(x)=-3x-4,∴f′(1)=-3×1-4=-3.【答案】
2024-12-12 20:01
【摘要】江蘇省建陵高級中學2020-2020學年高中數(shù)學常見函數(shù)的導數(shù)(1)導學案(無答案)蘇教版選修1-1一、學習目標1.能由導數(shù)的定義三個步驟推導如ykxb??、yc?、yx?、2yx?、1yx?等最簡單函數(shù)的導數(shù)公式。2.熟記冪函數(shù)、指數(shù)對數(shù)函數(shù)、正弦余弦函數(shù)的導數(shù)公式。3.初步會利用導數(shù)公式求簡單函數(shù)的導
2024-11-28 00:30
【摘要】導數(shù)在研究函數(shù)中的應用一般地,設函數(shù)y=f(x)的定義域為A,區(qū)間IA.?如果對于區(qū)間I內的任意兩個值x1、x2,當x1<x2時,都有f(x1)<f(x2),那么就說y=f(x)在區(qū)間I上是單調增函數(shù),I稱為y=f(x)的單調增區(qū)間.如果對于區(qū)間I內的任意兩個值x1、x2
【摘要】導數(shù)在研究函數(shù)中的應用——極大值與極小值一般地,設函數(shù)y=f(x),aby=f(x)xoyy=f(x)xoyab導數(shù)與函數(shù)的單調性的關系知識回顧1)如果在某區(qū)間上,那么f(x)為該區(qū)間上的增函數(shù),?f(x)02)如果在某區(qū)間上
2024-11-25 23:31
【摘要】江蘇省建陵高級中學2020-2020學年高中數(shù)學常見函數(shù)的導數(shù)(2)導學案(無答案)蘇教版選修1-1一、學習目標1.熟記常見的基本初等函數(shù)的求導公式。2.熟練掌握求簡單函數(shù)的導數(shù)的兩種方法:定義法、公式法。3.理解導數(shù)的幾何意義,并掌握曲線的切線問題的處理的基本路徑。二、課前預習1.列出你所知的求導公式。
【摘要】一、復習幾何意義:曲線在某點處的切線的斜率;(瞬時速度或瞬時加速度)物理意義:物體在某一時刻的瞬時度。2、由定義求導數(shù)(三步法)步驟:);()()1(xfxxfy?????求增量;)()()2(xxfxxfxy???????算比值)(,0)3(xfxyx????
2024-11-25 20:20
【摘要】江蘇省響水中學高中數(shù)學第3章《導數(shù)及其應用》常見函數(shù)的導數(shù)導學案蘇教版選修1-1學習目標:1.能根據(jù)導數(shù)的定義推導部分基本初等函數(shù)的導數(shù)公式;2.能利用導數(shù)公式求簡單函數(shù)的導數(shù).教學重點:基本初等函數(shù)的導數(shù)公式的應用.課前預習:1.在上一節(jié)中,我們用割線逼近切線的方法引入了導數(shù)的概念,那么如何求函數(shù)的導數(shù)呢
2024-12-13 06:44
【摘要】幾種常見函數(shù)的導數(shù)一、復習,過曲線某點的切線的斜率的精確描述與求值;物理學中,物體運動過程中,在某時刻的瞬時速度的精確描述與求值等,都是極限思想得到本質相同的數(shù)學表達式,將它們抽象歸納為一個統(tǒng)一的概念和公式——導數(shù),導數(shù)源于實踐,又服務于實踐.:(1)()
【摘要】常見函數(shù)的導數(shù)(2)一、復習公式一:=0(C為常數(shù))C?公式二:)()(1是常數(shù)???????xx公式三:公式四:xxcos)(sin??xxsin)(cos???公式五:指數(shù)函數(shù)的導數(shù)(2)().xxee??(1)()ln(0,1)
2024-11-27 13:11