【摘要】第三講柯西不等式與排序不等式課題:排序不等式宋云靜已知a,b,c為實(shí)數(shù),求證cabcabcba?????222引例知識探究先思考一個(gè)具體的數(shù)字計(jì)算題:已知兩組數(shù)1,2,3和4,5,6,若123,,ccc是4,5,6的一個(gè)排列,則123123ccc??
2024-11-26 12:11
【摘要】不等式和絕對值不等式第一講.,數(shù)學(xué)研究的重要內(nèi)容不等式是式表示這樣的不等關(guān)系人們常用不等上存在的不等關(guān)系來描述客觀事物在數(shù)量輕與重矮、人們常用長與短、高與現(xiàn)實(shí)中,,??????不等式一不等式的基本性質(zhì)1:,,.的大小位置關(guān)系來規(guī)定實(shí)數(shù)利用數(shù)軸上的點(diǎn)的左右因此可以對應(yīng)數(shù)軸上的點(diǎn)與實(shí)數(shù)一一道知我們實(shí)數(shù)的大小關(guān)系研究不等式的出
2024-11-26 12:12
【摘要】排序不等式三?????,?,:.,,,.,.,,,,,,.,,,,,,,,.,小個(gè)三角形的面積之和最使得到的才能如何一一搭配個(gè)三角形面積之和最大得到的才能使邊上的點(diǎn)如何一一搭配邊上的點(diǎn)與問不同因而三角形面積也可能不同得到的不同搭配的方法顯然個(gè)三角形得到一共可以這樣一一搭配得到連結(jié)某個(gè)點(diǎn)與選取某個(gè)點(diǎn)邊也
2024-11-25 15:12
【摘要】課時(shí)作業(yè)(三十九)絕對值不等式及柯西不等式(選修4-5)一、選擇題1.“|x-1|<2成立”是“x(x-3)<0成立”的( )A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件答案:B解析:|x-1|<2?-1<x<3,x(x-3)<0?0<x<3.則(0,3)(-1,3).故應(yīng)選B.2.設(shè)a,b為滿足ab<0的實(shí)
2025-08-11 15:29
【摘要】三個(gè)正數(shù)的算術(shù)3幾何平均不等式?,,?,有怎樣的不等式成立會個(gè)正數(shù)對于例如式能否推廣呢這個(gè)不等關(guān)系算數(shù)平均與幾何平均的的數(shù)給出了兩個(gè)正基本不等式思考3.,,,,,:,,,,,等號成立時(shí)當(dāng)且僅當(dāng)那么如果可能有個(gè)正數(shù)對于們猜想我式形的等式不本基比類cbaabccbaRcbacba???????
【摘要】絕對值不等式課堂練習(xí):解不等式|3x-4|≤19類型一:或a0型延伸:例1解不等式|x2-5x+5|1?解:原不等式可轉(zhuǎn)化為-1x2-5x+51
2024-11-17 12:20
【摘要】一般形式的柯西不等式二????.,,,,,是三維的形式空間向量的坐標(biāo)是二維形式平面上向量坐標(biāo)我們知道zyxyx?,,么結(jié)論呢關(guān)于柯西不等式會有什問題從三維的角度思考聯(lián)系前一節(jié)的內(nèi)容思考xyo???21aa,???11bb,?xyo???321aaa,,???311bbb,,?
2024-11-25 12:00
【摘要】 教學(xué)建議 :a2+b2≥2ab及定理2:的應(yīng)用要注意: (1)a2+b2≥2ab與成立的條件是不同的,前者只要求a,b都是實(shí)數(shù),而后者要求a,,例如:(-1)2+(-4)2≥2×(-1...
2025-04-03 03:21
【摘要】 教學(xué)建議 在利用算術(shù)幾何平均不等式求某些函數(shù)的最大、最小值時(shí),應(yīng)注意以下三點(diǎn): (1)在函數(shù)式中,各項(xiàng)(必要時(shí),還要考慮常數(shù)項(xiàng))必須都是正數(shù),若不是正數(shù),必須變形為正數(shù). (2)在函...
2025-04-03 03:45
【摘要】 教學(xué)建議 :||a|-|b||≤|a+b|,在解決各類含絕對值不等式問題時(shí)經(jīng)常用到,要注意理解應(yīng)用. |a|-|b|≤|a±b|≤|a|+|b|的詮釋. 定理的構(gòu) 成部分 特征 ...
2025-04-03 03:22
【摘要】式用數(shù)學(xué)歸納法證明不等二.納法證明不等式歸進(jìn)一步討論如何用數(shù)學(xué)下面我們結(jié)合具體例題.,,,,,,,,,:}{;,,,,,,,,,:}{.?,????????512256128643216842281644936251694112nnnnnbnaba證明你的結(jié)論小于從第幾項(xiàng)起觀察下面兩個(gè)數(shù)列例????
2024-11-25 17:34
【摘要】 教學(xué)建議 . ,使不等式變?yōu)椴缓^對值符號的一般不等式,而后,其解法就與解一般不等式或不等式組相同. |x-a||x-b|(a≠b)的解法可以利用解不等式|x|a(a0)?x2...
2025-04-03 01:44
【摘要】對于不等式大家并不陌生,我們已經(jīng)會解一些簡單的不等式和證明一些不等式,如1.求解下列不等式:①23100xx???②25xx??02.設(shè)1??n,且,1?n求證:13?nnn?2.第一講不等式和絕對值不等式(一)
2025-07-30 06:56
【摘要】整合提升知識網(wǎng)絡(luò)典例精講數(shù)學(xué)歸納法是專門證明與自然數(shù)集有關(guān)的命題的一種方法.它可用來證明與自然數(shù)有關(guān)的代數(shù)恒等式、三角恒等式、不等式、整除性問題及幾何問題.在高考中,用數(shù)學(xué)歸納法證明與數(shù)列、函數(shù)有關(guān)的不等式是熱點(diǎn)問題,特別是數(shù)列中的歸納—猜想—證明是對觀察、分析、歸納、論證能力有一定要求的,這也是它成為高考熱點(diǎn)的主要原因.【
2024-11-27 22:43
【摘要】絕對值不等式的解法你能一眼看出下面兩個(gè)不等式的解集嗎?⑴1x?⑵1x?探究新知例1解不等式532??x典型例題例2解不等式32?x>5典型例題例3:解不等式|5x-6|6–x典型例題鞏固練習(xí)試解
2024-11-19 05:59