【摘要】課題§(1)課型新授教學目1、能說出勾股定理,了解利用拼圖驗證勾股定理的方法2、經(jīng)歷探索勾股定理的過程,發(fā)展合情推理的能力,體會數(shù)形結(jié)合思想教學重點體驗勾股定理的探索過程教學難點勾股定理在生活實際中的應用教具準備教學過程教學內(nèi)容教師活動內(nèi)容、方式學生活動
2024-12-16 02:28
【摘要】探索勾股定理八年級數(shù)學(上冊)郵票賞析這是1955年希臘為紀念一位數(shù)學家曾經(jīng)發(fā)行的郵票。3452223+4=5郵票的秘密觀察這枚郵票圖案小方格的個數(shù),你有什么發(fā)現(xiàn)?(1)、在方格紙上,畫一個頂點都在格點上的直角三角形;(2)、分別以這個直角三角形的各邊為一邊向三角形外作正方形
2024-12-16 12:19
【摘要】一、選擇題1.若線段a,b,c組成Rt△,則它們的比可以是()A、2∶3∶4B、3∶4∶6C、5∶12∶13D、4∶6∶72.Rt△一直角邊的長為11,另兩邊為自然數(shù),則Rt△的周長為()A、121B、120C、132D、不能確定3.如果Rt△的兩直角邊長分別為
2024-12-13 08:56
【摘要】一、課內(nèi)訓練:1.在△ABC中,∠A=90°,則下列各式中不成立的是()A.BC2=AB2+AC2;B.AB2=AC2+BC2;C.AB2=BC2-AC2;D.AC2=BC2-AB22.填空(1)一個直角三角形的三邊從小到大依次為x,16,20,則x=_______;
2024-12-10 23:31
【摘要】勾股定理1.如圖,四邊形ABCD是正方形,AE垂直于BE,且AE=3,BE=4,陰影部分的面積是______.2.滿足______的三個正整數(shù),稱為勾股數(shù).3.在直角三角形ABC中,90,5,12,CACBCAB??????______.4.在直角三角形ABC中,斜邊
2024-11-23 23:41
【摘要】一、精心選一選(5×7):①6、8、10;②5、12、13;③8、15、17;④7、8、9,其中能構(gòu)成直角三角形的有().長的梯子斜靠在一豎直的墻上,這時梯腳距離墻角,如果梯子的頂端沿墻下滑,那么梯腳移動的
2024-11-23 11:47
【摘要】BCA勾股定理的應用課內(nèi)訓練1.如圖,某人欲橫渡一條河,由于水流的影響,實際上岸地點C偏離了欲到達點B240m,已知他在水中游了510m,求該河寬度.2.在一棵樹10m高的B處,有兩只猴子,一只爬下樹走到離樹20m處的池塘A處;另外一只爬到樹頂D處后直接躍到A外,距離以直線計算,如果兩只猴
2024-12-08 21:56
【摘要】一、選擇題(每小題5分,共25分)1.直角三角形兩條直角邊的長分別是3和4,則斜邊上的高是().A.5B.1C.1.2D.2.42.如果梯子的底端離建筑物5米,13米長的梯子可以達到建筑物的高度是().A.12米B.13米C.14米D.1
2024-12-11 07:15
【摘要】勾股定理的應用練習(1)第1題.如圖,△ABC中,∠ACB=90o,CD為AB邊上的高,若∠A=30o,AB=16,則BC=______,BD=______,CD=______.答案:8,4,43.第2題.如圖是一種“牛頭形”圖案,其作法是:從正方形1開始,以它的一邊為斜邊,向外
2024-12-11 06:40
【摘要】一、選擇題1.在下列實數(shù)中,無理數(shù)是A.3B.12?2.如圖,數(shù)軸上點P表示的數(shù)可能是A.7B.7?C.?D.10?-4P-3-2-1043213.一
2024-11-23 17:52
【摘要】《透鏡及其應用》測試題一、填空題(每空2分共34分)1、平面鏡、凸透鏡、凹透鏡、凸面鏡、凹面鏡中,使光線發(fā)生反射的是,對光線有會聚作用的是。2、畢業(yè)班的同學在照畢業(yè)照時發(fā)現(xiàn)有一部分同學沒有進入取景框,為了使全班同學都進入鏡頭,應使照相機_______學生,并調(diào)節(jié)鏡頭使鏡頭_
2024-12-13 03:00
【摘要】第一章勾股定理參考例題[例1]如下圖所示,△ABC中,AB=15cm,AC=24cm,∠A=60°,求BC的長.分析:△ABC是一般三角形,若要求出BC的長,只能將BC置于一個直角三角形中.解:過點C作CD⊥AB于點D在Rt△ACD中,∠A=60°∠ACD=90
2024-12-11 03:02
【摘要】2.7勾股定理的應用2.7勾股定理的應用(1)教學目標:1.能運用勾股定理及直角三角形的判定條件解決實際問題.2.在運用勾股定理解決實際問題的過程中,感受數(shù)學的“轉(zhuǎn)化”思想(把解斜三角形問題轉(zhuǎn)化為解直角三角形的問題),進一步發(fā)展有條理思考和有條理表達的能力,體會數(shù)學的應用價值.教學過程:1.情境創(chuàng)設(shè)
2024-11-27 21:13
【摘要】初中數(shù)學八年級上冊(蘇科版)勾股定理(1)郵票賞析這是1955年希臘為紀念一位數(shù)學家曾經(jīng)發(fā)行的郵票。3452223+4=5郵票的秘密觀察這枚郵票圖案小方格的個數(shù),你有什么發(fā)現(xiàn)?c43ICABD
2024-12-06 01:27
【摘要】探索勾股定理ABC,使它的兩條直角邊為AB=6cm,AC=8cm.(1)請你先測量斜邊BC的長.21世紀教育網(wǎng)(2)你能用其他方法探索這個直角三角形斜邊的長嗎?這個直角三角形的三邊長有什么關(guān)系嗎?(3)若使AB=AC=3cm,請你探索這個直角三角形的三邊長有什么關(guān)系?,并如圖1這樣擺放.(1)連結(jié)AE,請你判斷△
2024-12-13 05:45