【摘要】新課標人教版課件系列《高中數(shù)學》必修4《兩角和與差的正弦、余弦、正切》審校:王偉高考資源網(wǎng)教學目標?理解以兩角差的余弦公式為基礎,推導兩角和、差正弦和正切公式的方法,體會三角恒等變換特點的過程,理解推導過程,掌握其應用.?二、教學重、難點?1.教學重點:兩角和、差正弦和正切
2024-11-19 21:11
【摘要】主講老師:余弦公式復習引入?)3045cos(15cos,2330cos,2245cosooooo?????由此我們能否得到初中時我們知道復習引入?30cos45cosoo呢是不是等于?猜想:?)3045cos(15cos,2330
2024-11-17 08:12
【摘要】某城市的電視發(fā)射塔建在市郊的一座小山上.如圖所示,在地平面上有一點A,測得A、C兩點間距離約為60米,從A觀測電視發(fā)射塔的視角(∠CAD)為∠DAB=求AD長度.????思考:兩角差的余弦公式探究:如何用任意角α,β的正弦、余弦值表示?cos()???
2024-08-07 16:07
【摘要】1不用計算器,求的值.1.15°能否寫成兩個特殊角的和或差的形式?2.cos15°=cos(45°-30°)=cos45°-cos30°成立嗎?
2024-11-18 00:54
【摘要】[答案](1)2-64(2)6-24(3)sinα[解析](1)cos105°=cos(60°+45°)=cos60°cos45°-sin60°sin45°=12·2
2024-11-17 01:26
【摘要】《兩角和與差的余弦公式》教學設計一、教材地位和作用分析:兩角和與差的正弦、余弦、正切是本章的重要內(nèi)容,是正弦線、余弦線和誘導公式等知識的延伸,是后繼內(nèi)容二倍角公式、和差化積、積化和差公式的知識基礎,對于三角變換、三角恒等式的證明和三角函數(shù)式的化簡、求值等三角問題的解決有重要的支撐作用。本課時主要講授平面內(nèi)兩點間距離公式、兩角和與差的余弦公式以及誘導公式。二、教學目標:1、知識目標
2025-05-17 22:45
【摘要】兩角差的余弦公式說課稿?教材分析1、教材所處的地位和作用:《兩角差的余弦公式》是新課標人教版數(shù)學必修四第三章第一課時的教學內(nèi)容,是本模塊第一章《三角函數(shù)》和第二章《平面向量》相關知識的延續(xù)和拓展。其中心任務是通過已學知識,探索建立兩角差的余弦公式。它不僅是前面已學的誘導公式的推廣,也是后面其它和(差)角公式推導的基礎和核心,具有承前啟后的作用,是本章的重點內(nèi)容之一。
2025-04-22 12:53
【摘要】問題:?如何用角和的正弦或余弦表示角????即:用中的幾個表示????cos,sin,cos,sin)cos(???的余弦先猜想猜想1:只含一次????sinsin)cos(???猜想2:只含二次猜想3:同時含一次、二次
2024-11-17 09:23
【摘要】1兩角和與差的正切安吉縣昌碩高中高一年級備課組2sin)sincoscossin?????????(cos)coscossinsin????????(復習3兩角和的正切公式:?sinαcosβ+cosαsinβcosαcosβ-sinαsinβ
2024-11-18 01:05
【摘要】兩角和與差的余弦公式與正弦公式第1章三角計算及其應用創(chuàng)設情境興趣導入13cos60cos3022????,,??cos6030cos60cos30??????-.??coscoscos??????-.我們知道,顯然動腦
2024-11-25 07:28
【摘要】兩角和與差的余弦公式與正弦公式第1章三角計算及其應用創(chuàng)設情境興趣導入πcos2??????????動腦思考探索新知πcos()2??sin?由于=.對于任意角都成立,所以ππsin()cos()cos()22????
【摘要】兩角和與差的余弦公式與正弦公式第1章三角計算及其應用動腦思考探索新知sin2sincoscossin2sincos??????????.???在兩角和的正弦公式中,令,可以得到二倍角的正弦公式sin22sincos????即()同理,公式(
【摘要】第一篇:課題:兩角差的余弦公式教案說明 《兩角差的余弦公式》教案說明 湖南師大附中 吳菲 一、授課內(nèi)容的數(shù)學本質與教學目標定位: 《兩角差的余弦公式》這節(jié)課的主要內(nèi)容是公式的探究及應用,它揭...
2024-10-13 18:27
【摘要】第五節(jié)兩角和與差的正弦、余弦和正切公式1、兩角和與差的正弦、余弦和正切公式C(a-b):cos(a-b)=_________________________;C(a+b):cos(a+b)=_________________________;S(a+b):sin(a+b)=_________________________;S(a-b)
2024-11-20 01:26
【摘要】數(shù)學:“兩角差的余弦公式”教學設計一、教學內(nèi)容解析三角恒等變換處于三角函數(shù)與數(shù)學變換的結合點和交匯點上,是前面所學三角函數(shù)知識的繼續(xù)與發(fā)展,是培養(yǎng)學生推理能力和運算能力的重要素材.兩角差的余弦公式是《三角恒等變換》這一章的基礎和出發(fā)點,公式的發(fā)現(xiàn)和證明是本節(jié)課的重點,也是難點.由于和與差內(nèi)在的聯(lián)系性與統(tǒng)一性,我們可以
2024-11-26 21:26