【摘要】非線性方程組研究畢業(yè)論文第一章緒論:可以看出是在空間的實(shí)值函數(shù)。再用向量轉(zhuǎn)換下可以得到:,x=,0=此時(shí)可以把方程換成:。()把F可以看做在區(qū)域內(nèi)展開的非線性映像,表示為:,。
2025-07-03 16:46
【摘要】1第三章2線性方程組是線性代數(shù)中最重要最基本的內(nèi)容之一,是解決很多實(shí)際問題的的有力工具,在科學(xué)技術(shù)和經(jīng)濟(jì)管理的許多領(lǐng)域(如物理、化學(xué)、網(wǎng)絡(luò)理論、最優(yōu)化方法和投入產(chǎn)出模型等)中都有廣泛應(yīng)用.第一章介紹的克萊姆法則只適用于求解方程個(gè)數(shù)與未知量個(gè)數(shù)相同,且系數(shù)行列式非零的線性方程組.本章研究一般線性
2025-05-18 14:25
【摘要】LU分解法求解線性方程組L為下三角,U為單位上三角???????????????????????????????????????????nnnnnnnnnnnnuuuuu
2024-08-08 08:09
【摘要】第六章非線性方程組的迭代解法非線性方程組的數(shù)值解法非線性方程組的Newton法非線性方程組的Newton法非線性方程組的不動點(diǎn)迭代法第六章非線性方程組的迭代解法第六章非線性方程組的迭代解法學(xué)習(xí)目標(biāo):第六章非線性方程組的迭代解法TnxfxfxfxF))()
2024-10-08 09:49
【摘要】第五章線性方程組的迭代解法消去法方程組系數(shù)矩陣的分類?低階稠密矩陣(例如,階數(shù)不超過150)(一般用直接法來求解)?大型稀疏矩陣(即矩陣階數(shù)高且零元素較多)(一般用迭代法來求解)線性方程組的數(shù)值解法分類?直接法經(jīng)過有限步算術(shù)運(yùn)算,可求得方程組精確解的方法。
2024-08-05 10:31
【摘要】南昌工程學(xué)院畢業(yè)論文理學(xué)系(院)信息與計(jì)算科學(xué)專業(yè)畢業(yè)論文題目非線性方程組的數(shù)值算法研究學(xué)生姓名張浩浩
2025-05-21 14:29
【摘要】2022/8/28華南師范大學(xué)數(shù)學(xué)科學(xué)學(xué)院謝驪玲第3章線性方程組AX=B的數(shù)值解法華南師范大學(xué)數(shù)學(xué)科學(xué)學(xué)院謝驪玲2022/8/28引言?在自然科學(xué)和工程技術(shù)中很多問題的解決常常歸結(jié)為解線性代數(shù)方程組。例如電學(xué)中的網(wǎng)絡(luò)問題,船體數(shù)學(xué)放樣中建立三次樣條函數(shù)問題,用最小二乘法求實(shí)驗(yàn)數(shù)據(jù)的曲線擬合問題,解非線性方程組問
2024-08-18 11:07
【摘要】線性方程組的求解中國青年政治學(xué)院鄭艷霞?使用建議:建議教師具備簡單的MATHMATICA使用知識。?課件使用學(xué)時(shí):4學(xué)時(shí)?面向?qū)ο螅何目平?jīng)濟(jì)類本科生?目的:掌握線性方程組的知識點(diǎn)學(xué)習(xí)。為民主黨投票為共和黨投票為自由黨投票?????
2024-10-06 12:10
【摘要】沈陽航空航天大學(xué)理學(xué)院本科學(xué)位論文開題報(bào)告論文題目:求解稀疏線性方程組的迭代算法專業(yè):信息與計(jì)算科學(xué)學(xué)生姓名:指導(dǎo)教師:報(bào)告時(shí)間:2015年3月18日指導(dǎo)教師意見:
2025-01-27 16:54
【摘要】§非線性方程組的迭代解法§預(yù)備知識一、一般非線性方程組及其向量表示法11221212(,,,)0(,,,)0()(,,,)0nnnnfxxxfxxxfxxx????????
2024-08-06 07:09
【摘要】西安電子科技大學(xué)理學(xué)院主講:王衛(wèi)衛(wèi)第七章線性方程組的直接解法/*Directmethodsforthesolutionoflinearsystems*/線性方程組:11112211211222221122nnnnnnnnnnaxaxaxbax
2024-12-14 01:07
【摘要】第六章線性方程組的迭代解法§1向量和矩陣的范數(shù)向量的范數(shù)矩陣的范數(shù)§2迭代解法與收斂性迭代解法的構(gòu)造迭代解法的收斂性條件§3常用的三種迭代解法Jacobi迭代法Gauss-Seide
2024-08-03 00:10
【摘要】第一節(jié)矩陣矩陣概念的引入矩陣的定義小結(jié)第二章矩陣11112211211222221122nnnnnnnnnnaxaxaxbaxaxaxbaxaxaxb???????????
2024-08-18 10:12
【摘要】1分別用矩陣求逆、矩陣除法以及矩陣分解求線性方程的解。2下面是一個(gè)線性病態(tài)方程組:(1)求方程的解。(2)將方程右邊向量元素b3改為[::],再求解,并比較b3的變化和解的相對變化。(3)計(jì)算系數(shù)矩陣A和條件數(shù)并分析結(jié)論。解:1-1A=[2,3,5;3,7,4;1,-7,1];B=[10,3,5]X=A\B.'
2025-03-30 07:03
【摘要】第六章線性方程組的解法§引言與預(yù)備知識§高斯消去法§高斯主元素消去法§矩陣的三角分解法§誤差分析§線性方程組的迭代解法§引言與預(yù)備知識(返回)?線性方程組的數(shù)值解法?向量和矩陣(返回)?矩陣的基本運(yùn)算
2025-02-27 12:44