【摘要】平面向量知識(shí)點(diǎn)分類(lèi)復(fù)習(xí)深圳明德實(shí)驗(yàn)學(xué)校劉凱1、向量有關(guān)概念:(1)向量的概念:既有大小又有方向的量,注意向量和數(shù)量的區(qū)別。向量常用有向線段來(lái)表示,注意不能說(shuō)向量就是有向線段,為什么?(向量可以平移)。配合練習(xí)1、已知A(1,2),B(4,2),則把向量按向量=(-1,3)平移后得到的向量是_____(2)零向量:長(zhǎng)度為0的向量叫零向量,記作:,注意零向量的方向是任意的;
2025-04-23 01:00
【摘要】平面向量知識(shí)點(diǎn)整理1、概念向量:既有大小,又有方向的量.?dāng)?shù)量:只有大小,沒(méi)有方向的量.有向線段的三要素:起點(diǎn)、方向、長(zhǎng)度.單位向量:長(zhǎng)度等于個(gè)單位的向量.平行向量(共線向量):方向相同或相反的非零向量.零向量與任一向量平行.相等向量:長(zhǎng)度相等且方向相同的向量.相反向量:向量表示:幾何表示法;字母a表示;坐標(biāo)表示:a=xi+yj=(x,y).向量
2025-06-25 18:52
【摘要】高三數(shù)學(xué)專(zhuān)題復(fù)習(xí)79班級(jí):姓名:時(shí)間:平面向量的加減運(yùn)算一.知識(shí)梳理1、向量加法:設(shè),則+==作圖法:平行四邊形法則(共起點(diǎn)),三角形法則(首尾相接).2、向量減法:向量加上的相反向量叫做與的差,③作圖法:可以表示為從的終點(diǎn)指向的終點(diǎn)的向量(、有共同起點(diǎn))
2025-06-25 22:03
【摘要】平面向量一.向量有關(guān)概念:1.向量的概念:既有大小又有方向的量,注意向量和數(shù)量的區(qū)別。向量常用有向線段來(lái)表示,注意不能說(shuō)向量就是有向線段,為什么?(向量可以平移)。如:2.零向量:長(zhǎng)度為0的向量叫零向量,記作:,注意零向量的方向是任意的;3.單位向量:長(zhǎng)度為一個(gè)單位長(zhǎng)度的向量叫做單位向量(與共線的單位向量是);4.相等向量:長(zhǎng)度相等且方向相同的兩個(gè)向量叫相等向量,相等向量有傳
2025-07-01 08:09
【摘要】......平面向量知識(shí)點(diǎn)小結(jié)一、向量的基本概念:既有大小又有方向的量,.注意:不能說(shuō)向量就是有向線段,為什么?提示:向量可以平移.舉例1已知,,則把向量按向量平移后得到的向量是_____.結(jié)果::長(zhǎng)
2025-07-01 07:54
【摘要】平面向量與空間向量知識(shí)點(diǎn)對(duì)比內(nèi)容平面向量空間向量定義既有大小,又有方向既有大小,又有方向表示方法(1)用有向線段表示;(2)用或a,b,c表示模向量的長(zhǎng)度,用||或|a|表示零向量長(zhǎng)度為0的向量,記為a單位向量模為1的向量叫做單位向量相等向量長(zhǎng)度相等,方向相同的向量叫做相等向量相反向量長(zhǎng)度相
2025-06-25 22:59
【摘要】段宇昕數(shù)學(xué)資料平面向量知識(shí)點(diǎn)歸納§ 平面向量的概念及線性運(yùn)算1.向量的有關(guān)概念名稱(chēng)定義備注向量既有大小又有方向的量;向量的大小叫做向量的長(zhǎng)度(或稱(chēng)模)平面向量是自由向量零向量長(zhǎng)度為0的向量;其方向是任意的記作0單位向量
2025-06-28 17:27
【摘要】平面向量基礎(chǔ)知識(shí)復(fù)習(xí)必修4平面向量知識(shí)點(diǎn)小結(jié)一、向量的基本概念:既有大小又有方向的量,.注意:不能說(shuō)向量就是有向線段,為什么?提示:向量可以平移.舉例1已知,,則把向量按向量平移后得到的向量是_____.結(jié)果::長(zhǎng)度為0的向量叫零向量,記作:,規(guī)定:零向量的方向是任意的;:長(zhǎng)度為一個(gè)單位長(zhǎng)度的向量叫做單位向量(與共線的單位向量是);:長(zhǎng)度相
【摘要】第二章平面向量知識(shí)點(diǎn)歸納一.向量的基本概念與基本運(yùn)算1向量的概念:①向量:既有大小又有方向的量向量一般用……來(lái)表示,或用有向線段的起點(diǎn)與終點(diǎn)的大寫(xiě)字母表示,如:幾何表示法,;坐標(biāo)表示法向量的大小即向量的模(長(zhǎng)度),記作||即向量的大小,記作||向量不能比較大小,但向量的模可以比較大?。诹阆蛄浚洪L(zhǎng)度為0的向量,記為,其方向是任意的,與任意向量平
2025-07-01 07:42
【摘要】.高一數(shù)學(xué)第八章平面向量第一講向量的概念與線性運(yùn)算一.【要點(diǎn)精講】1.向量的概念①向量:既有大小又有方向的量。幾何表示法,;坐標(biāo)表示法。向量的模(長(zhǎng)度),記作||.即向量的大小,記作||。向量不能比較大小,但向量的??梢员容^大小.②零向量:長(zhǎng)度為0的向量,記為,其方向是任意的,規(guī)定平行于任何向量。(與0的區(qū)別)③單位向量||=1。④平行向量(共線向量)
2025-04-10 04:58
【摘要】第五章平面向量【考綱說(shuō)明】1、理解平面向量的概念和幾何表示,理解兩個(gè)向量相等及共線的
2025-07-01 07:34
【摘要】平面向量經(jīng)典例題:1.已知向量a=(1,2),b=(2,0),若向量λa+b與向量c=(1,-2)共線,則實(shí)數(shù)λ等于( )A.-2 B.-C.-1 D.-[答案] C[解析] λa+b=(λ,2λ)+(2,0)=(2+λ,2λ),∵λa+b與c共線,∴-2(2+λ)-2λ=0,∴λ=-1.2.(文)已知向量a=(,1),b=(0,1),c=(k
2025-03-31 01:22
【摘要】平面向量知識(shí)點(diǎn)知識(shí)點(diǎn)歸納1、向量的概念:①向量:既有大小又有方向的量向量不能比較大小,但向量的??梢员容^大?。诹阆蛄浚洪L(zhǎng)度為0的向量,記為,其方向是任意的,與任意向量平行③單位向量:模為1個(gè)單位長(zhǎng)度的向量④平行向量(共線向量):方向相同或相反的非零向量⑤相等向量:長(zhǎng)度相等且方向相同的向量2、向量加法:設(shè),則+=
2024-08-24 11:08
【摘要】平面向量的概念與線性運(yùn)算知識(shí)點(diǎn)1.向量:既有大小,又有方向的量.2.?dāng)?shù)量:只有大小,沒(méi)有方向的量.3.有向線段的三要素:起點(diǎn)、方向、長(zhǎng)度.4.零向量:長(zhǎng)度為的向量.5.單位向量:長(zhǎng)度等于個(gè)單位的向量.6.平行向量(共線向量):方向相同或相反的非零向量.零向量與任一向量平行. 注:任一組平平行向量都可以平移到同一直線上7.相等向量:長(zhǎng)度相等且方向相同的向量.
2025-07-01 14:47
【摘要】平面向量【基本概念與公式】【任何時(shí)候?qū)懴蛄繒r(shí)都要帶箭頭】:既有大小又有方向的量。記作:或。:向量的大?。ɑ蜷L(zhǎng)度),記作:或。:長(zhǎng)度為1的向量。若是單位向量,則。:長(zhǎng)度為0的向量。記作:?!痉较蚴侨我獾?,且與任意向量平行】(共線向量):方向相同或相反的向量。:長(zhǎng)度和方向都相同的向量。:長(zhǎng)度相等,方向相反的向量。。:;;(指向被減數(shù)):
2024-08-24 10:44