【正文】
證明 因?yàn)楹瘮?shù)列在區(qū)域上一致收斂于,即對(duì)任給的正數(shù),總存在某一正數(shù),使得當(dāng)時(shí),對(duì)一切都有,所以對(duì)每一確定的及對(duì)任給的正數(shù),也存在著正數(shù),使得當(dāng)時(shí)有即在區(qū)域上收斂于。如果對(duì),區(qū)域總可以用有限個(gè)開區(qū)域覆蓋,并且有相應(yīng)的一組大于的自然數(shù),使得對(duì),恒有 則稱在上次一致收斂于([1])。如果對(duì)都存在,使得對(duì),都有,則稱在上局部一致收斂于( [1])。 設(shè)二元函數(shù)列與二元函數(shù)定義在同一區(qū)域上,若對(duì)任給的正數(shù),總存在某一正數(shù)(值只與的值有關(guān)),使得當(dāng)時(shí),對(duì)一切都有,則稱在上一致收斂于。 設(shè)二元函數(shù)定義在區(qū)域上, 存在某一個(gè)固定點(diǎn),如果對(duì),使得對(duì),都有,則稱在點(diǎn)連續(xù)。所以命題得證。二元函數(shù)列極限定義 設(shè)函數(shù)列與定義在區(qū)域上,若對(duì)每一固定的,對(duì)任意給定的,總存在著正整數(shù)(值與的值有關(guān)),當(dāng)時(shí),總有。于是,有。若數(shù)列(32)發(fā)散,則稱二元函數(shù)列(31)在點(diǎn)發(fā)散。3二元函數(shù)列 (31)是一列定義在同一區(qū)域上的函數(shù),稱為定義在上的二元函數(shù)列,可寫作。(可積性)若函數(shù)列在上一致收斂,且它的每一項(xiàng)在區(qū)間上都連續(xù),則 ([4])。 : ([4])。(2) 如果函數(shù)列次一致收斂于函數(shù),則函數(shù)列必局部一致收斂于函數(shù)([5])。 設(shè)函數(shù)列與函數(shù)在同一個(gè)區(qū)間上。 (函數(shù)列一致收斂的柯西準(zhǔn)則) 函數(shù)列在數(shù)集上一致收斂的充要條件是:對(duì)任給正數(shù),總存在正數(shù),使得當(dāng)自然數(shù)時(shí),對(duì)一切,都有([4])。,則必在上收斂于([5])。,且,如果區(qū)間總可以用有限個(gè)開區(qū)間覆蓋,并且有一組大于的自然數(shù)使恒有則稱函數(shù)列在區(qū)間上次一致收斂于([5])。,若對(duì)任給的正數(shù),總存在某一正數(shù),使得當(dāng)時(shí),對(duì)一切都有則稱函數(shù)列一致收斂于([4])。函數(shù)列極限的定義 對(duì)每一個(gè)固定的,對(duì),(注意:一般說來值的確定與和的值都有關(guān)),使得當(dāng)時(shí),總有 使函數(shù)列收斂的全體收斂點(diǎn)的集合,稱為函數(shù)列的收斂域 ([4])。2 一元函數(shù)列的基本概念 (21)是一列定義在同一數(shù)集上的函數(shù),稱之為定義在上的函數(shù)列.(21)式也可簡記為: 或 , 設(shè),將代入得到數(shù)列: (22)若數(shù)列(22)收斂,則稱函數(shù)列(21)在點(diǎn)收斂,稱為函數(shù)列(21)(22)發(fā)散,則稱函數(shù)列(21)(21)在數(shù)集上每一點(diǎn)都收斂,則稱(21),都有數(shù)列的一個(gè)極限值與之對(duì)應(yīng),由這個(gè)對(duì)應(yīng)法則就確定了上的一個(gè)函數(shù),稱它為函數(shù)列的極限函數(shù)([4]),記作。給出了判定二元函數(shù)列一致收斂的柯西準(zhǔn)則和二元函數(shù)列的極限函數(shù)連續(xù)、可導(dǎo)及可積的充分條件。引進(jìn)了二元函數(shù)列一致收斂、局部一致收斂與次一致收斂的概念。然后,給出二元函數(shù)列的定義。本文研究二元函數(shù)列的收斂性。函數(shù)列的收斂性也是討論函數(shù)項(xiàng)級(jí)數(shù)收斂的重要方法。關(guān)鍵詞:二元函數(shù)列,一致收斂,次一致收斂,局部一致收斂,收斂性判別法AbstractThe theory of function sequence’s convergence is one of important contents in mathematics analysis. The notion of the uniform convergence of function sequences has been applied to the theoretical research of solving differential equations, the theory of control, approximation pution and the estimation of errors, and so on. The convergence of bivariate function sequences is investigated in this article. First,some definitions and theorems for univariate function sequences are recalled. Next, the notion of b