freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

真空中的靜電場ppt課件-文庫吧資料

2025-05-11 03:19本頁面
  

【正文】 處指向低處 . S 的空氣平行板電容器 ,極板上分別帶電量 177。 [ C ] [ C ] 4?如圖所示,一個帶電量為 q 的點電荷位于正立方體的 A 角上,則通過側(cè)面 abcd 的電場強度通量等于: abdcA q( A) q /6?0 。 ( C) 場強方向可由 E=F/q 定出,其中 q 為試驗電荷的電量, q 可正、可負(fù), F 為試驗電荷所受的電場力。 解: (1)在 x處取厚為 dx 的平板,此平板帶電量 Sdxdq ?? ?電荷面密度為 dxSdq ?? ?? aM1M 2Mo x則 02 ???dE?? a dxkxE002 ?( 2)板內(nèi)任一點 M 左側(cè)產(chǎn)生的場強方向沿 x 軸正向, dxkxEx?? 001 2 ?aM1M 2Mo x02 ?k x dx?02??dx?024?ka?024?kx?? ?0220244 ??xakkxE ??( 3) E = 0 時最小, 02 22 ?? axM 右側(cè)產(chǎn)生的場強方向沿 x 軸負(fù)向, dxkxEax??02 2 ?aM1M 2Mo x? ?0224 ?xak ?? ?22024axk ??2ax ?? ( A)電場中某點場強的方向,就是將點電荷放在該點所受電場力的方向。 2 0???EpdE XR rdr??????+?220112 xRxx??,一厚為 a 的“無限大”帶電平板,電荷體密度 ? = kx (0≤x≤a) k為一正的常數(shù)。 0 xyR ??解: 在 ? 處取電荷元, 其電量為 dldq ??它在 o點處產(chǎn)生的場強為 204 RdqdE??? 0 xy?dE ydExdEdqRd004si n????????? dR si n0?在 x、 y 軸上的二個分量 ?c o sdEdE x ??s i ndEdE y ?? ?? ? ??????000 0c o ssi n4dRE x?? ? ?????0200 si n4dRE yjiE yx EE +??0 xy?dE ydExdEdqR008 ???jR008 ??? Q ,半徑為 R 的均勻帶電圓環(huán)在其軸線上任一點的場強公式: ? ? 232204 xRQxE+???推導(dǎo)一半徑為 R、電荷面密度為 ? 的均勻帶電圓盤在其軸線上任一點的場強,并進(jìn)一步推導(dǎo)電荷面密度為 ? 的“無限 大 ”均勻帶電平面的場強。 00 qAqEU aP ??? (疊加法) ——連續(xù)帶電體 iniUU ???1???ni iirq1 04 ??dUUV??體rdqV04 ????體(定義法) lE dU aa ?? ??四、兩個重要定理 0?? ???? ?? qdS SE ? ??L d 0lE高斯面 例 1: 兩同心均勻帶電球面,帶電量分別為 q q2, 半徑分別為 R1 、 R2 , 求各區(qū)域內(nèi)的場強和電勢。 解: 由于等勢面法線 n0 方向與 r 相同, 0nE nU???0rrU???004r?????????rqr ?? 0204rrq??? 應(yīng)用舉例 例 2: 均勻帶電圓盤半徑為 R ,面電荷密度為 ? ,求 軸線上一點的場強。 E=0, ,0??? nU CU ?該區(qū)域為等勢區(qū) 如 E=C, ,CnU ???該區(qū)域電勢均勻變化。 如兩等量異號電荷連線中點上。 ?場強大處,電勢不一定大。 量的分布。 ,場強大,電力線也密。 注意幾點 1.―–‖表示 E 的方向為電勢降落的方向。 電場強度等于電勢在等勢面法線方向上方向?qū)?shù)的負(fù)值。 Ua ldnddUU +dUUUba ?lE d???c o sE d l??lEE ??c o sdlEdU l?dldUEl ? lU???為分量 bclUEl ???電場強度在某個方向上的分量,等于電勢在此方向上的方向?qū)?shù)的負(fù)值。 E的方向為電勢降的方向。 證明: EU2等勢面 假設(shè) 1–2 dl 為電勢升的方向。 證明: 在等勢面上從 a 點到 b 點移動檢驗電荷 q0,電場力的功 a blE dqA ba?? ?0lE dU baab ??? 0?0c o s ?? ?E d lba等勢面 ,0c o s ?? ? lE d?0c o s ?? ?E d lba路徑 dl 在等勢面上, 等勢面?E 證畢 作功。 等勢面與電力線垂直。 四、等勢面、場強與電勢的微分關(guān)系 等勢面 電場中電勢相同的各點組成的曲面。 o rP?解: 無限長帶電直線的場強: rE02 ????lE dUPP?? ? ?選無窮遠(yuǎn)為電勢 0 點 E drP?? ? drrr02 ????? ?rdrrUrP02 ???? ??)ln( l n2 0r?????無意義 對無限帶電體電勢 0 點不宜選無窮遠(yuǎn)點,也不選在導(dǎo)體上。方法 2:定義法 ——具有高度對稱的場 。 例 4: 均勻帶電球殼半徑為 R,電量為 q,求:球殼內(nèi)、外的電勢分布。方法 1:疊加法 例 3: 均勻帶電圓盤,半徑為 R,帶電為 q,求圓盤軸線上一點的電勢 U。 o xRqxdqdV解:方法 1:疊加法將圓環(huán)分割成無限多個電荷元: rdqdU04 ???r?? dUUdqrq??0041??環(huán)上各點到軸線等距。 q+ q+q qo解: 由 ???41 04i iirqU??)(410qqqqr+???0?r第一類問題:點電荷系電勢的計算。 4 靜電場的環(huán)路定理 電勢 一、靜電場力的功 靜電場的環(huán)路定理 二、電勢能 電勢 三、電勢的計算 四、等勢面 電勢梯度 qE?一 . 1. 電場力的功 在點電荷 q 的電場中 12rdFA???? ???2121r? E?0qrrqE ??304 ???rdrrqqA???? ???2130021 4 ??????210 rdEq??1r2r將檢驗電荷 q0 從位 電場力作功 置 1 移到位置 2 drrqqrr??212004 ??20010021021 44 rqqrqqrdEqA??????? ?????電場力作的功只與始末位置有關(guān) , 而與路徑無關(guān) . 電場力為保守力 , 靜電場為保守場 . qE?12r? E?0q1r2rrdrrqqA???? ???2130021 4 ??drrrqq ???21300 4 ??qE?12r? E?0q1r2ra??210ardEq??b??120brdEq??10020044 rqqrqq???????1210bardEq?????210ardEq????+120brdEq??20010044 rqqrqq?????)44(200100rqqrqq????? )44(100200rqqrqq????+0???121 bardE?? 0?? ??LrdE 0?? ?L表示沿閉合路徑線積分 2. 靜電場的環(huán)路定理 靜電場中電場強度沿任意閉合路徑的線積分等于零 . 環(huán)路定理 場強環(huán)路定理的數(shù)學(xué)表達(dá)式 ? ??LrdE 0??將單位正電荷沿閉合路徑移動一周靜電場力作的功為 0 . 場強環(huán)路定理的另一種表達(dá)形式 ? ??LdE 0???或 場強環(huán)路定理的證明 證畢 E?abLrdFALa c b d a??? ??cdrdEqa c b d a??? ??00?0??? rdEL??電荷 q0 沿任意閉合路徑 acbda 移動一周 , 電場力作功 : rdEqa c b??? ?? 0rdEqa c b??? ?? 0rdEqL?? ?? ?0? ?+bdardEq??0? ?adbrdEq??0rdEqL?? ?? ?0由環(huán)路定理證明電場的一個重要性質(zhì) 反證法: 作功: 與環(huán)路定理矛盾 , 電力線為非閉合曲線 . E?LrdE ?? // 0?? rdE ??0??? rdEL??假設(shè)電力線為閉合曲線 , 將單位正電荷沿電力線移動一周 電力線為非閉合曲線 二 . 靜電場力是保守力 , 可引入勢能即電勢 能的概念 . 靜電場力的功等于電勢能增量的負(fù)值 . )( 12 PP EEA ?靜電場力如對點電荷 點電荷電勢能 )44(10020021 rqqrqqA??????rqqEP004 ???兩邊同除以 q0: 2. 電勢 )( 1221021PP EErdEqrdFA ????? ????????靜電場力020102100qEqEqrdEqqAPP???????靜電場力靜電場力是保守力 , 保守力作的功等于電勢能增量的負(fù)值 . 電勢定義: 0201210 qEqErdEqAPP ??? ????靜電場力0qEU Pa ??????21210UUrdEqA ??靜電場力011 qEU P?022 qEU P?位置 1 的電勢 位置 2 的電勢 ?????
點擊復(fù)制文檔內(nèi)容
教學(xué)課件相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1