freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

結構力學穩(wěn)定理論ppt課件-文庫吧資料

2025-05-10 12:01本頁面
  

【正文】 B)2(0)()1(0)(2121???????????????kPlPlkkPl?由位移參數(shù)不全為零得穩(wěn)定方程并求解: )3(03022 ????????????????????lklkPPkPlPlkkPl 展開得:lkPPlkPlkPcr , 121 ????解得:?求失穩(wěn)曲線: 。并繪其失穩(wěn)曲線。 勢能駐值條件等價于以位移表示的平衡方程。④ 應用位移有非零解 的條件 ,得出特征方程 。② 寫出 總勢能表達式 。對于多自由度體系,結論仍然成立。即在荷載達到臨界值前后,總勢能由正定過渡到非正定。 θ Π PPcr θ Π PPcr θ Π P=Pcr 結論: 1)當體系處于穩(wěn)定平衡狀態(tài)時,其總勢能必為最小。 3) P=k/l ,當 θ為任意值時, Π恒等于零 (即 U=UP) 。當 θ=0, Π為極大值 0。 λ θ EI=∞ 單自由度體系也可由 Π=0解得: lkP?221 )( ?? PlkUU P ???? 總勢能是位移 θ 的二次函數(shù), 1) Pk/l , 當 θ≠ 0, Π 恒大于零( Π 為正定) (即 UUP表示體系具有足夠的應變能克服荷載勢能,使壓桿恢復到原有平衡位置 )當 θ=0 , Π 為極小值 0。 用能量法求臨界荷載,依據(jù)于臨界狀態(tài)的 平衡條件,它等價于勢能駐值原理: 彈性體系在臨界狀態(tài),其總勢能為駐值,即 δΠ =0 或: Π =0 ( 單自由度體系) (用于多自由度體系) P l A B k l MA=kθ P B180??倓菽?Π=U+ UP即總勢能的增量 δΠ。 對于彈性變形體系 , 其穩(wěn)定性與能量的關系與剛性小球情 況相似 。 B點為隨遇平衡,偏離B點 δΠ=0 勢能不變。 也可從穩(wěn)定與能量的關系來分析穩(wěn)定性。 022 ??? PklP PPkl 0)2(22 ??? PPklklPklP?? 3crP?A B C D 11112121 ????yyyy1 1 對稱問題可利用對稱性做。使用兩種方 法求其臨界荷載。 根據(jù)臨界狀態(tài)的靜力特征 , 該齊次方程組除零解外 ( 對應于原有平衡形式 ) , 還應有非零解 ( 對應于新的平衡形式 ) , 故應使方程組的系數(shù)行列式為零 , D=0即為穩(wěn)定方程 , 從穩(wěn)定方程求出的最小根即為臨界荷載 Pcr。 l 0?? AMPl ? ?k0)( ?? ?kPl0)( ?? ?kPlθ=0, 原始平衡 θ≠0, 新平衡形式 lkPcr ?0?? kPl特征方程(穩(wěn)定方程) 臨界荷載 MA=kθ 確定體系變形形式 (新的平衡形式 )的獨立位移參數(shù)的數(shù)目即穩(wěn)定體系的 自由度 . P 轉動剛 度系數(shù) k B180。 (平衡形式的二重性) 能量法 :考慮 臨界狀態(tài)
點擊復制文檔內(nèi)容
教學課件相關推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1