【摘要】3、數(shù)列求和數(shù)列求和的方法.(1)公式法:?等差數(shù)列的前n項(xiàng)求和公式=__________________=_______________________.?等比數(shù)列的前n項(xiàng)和求和公式(2),數(shù)列的通項(xiàng)公式能夠分解成幾部分,一般用“分組求和法”.(3),數(shù)列的通項(xiàng)公式能夠分解成等差數(shù)列和等比數(shù)列的乘積,一般用“錯(cuò)
2025-03-31 02:52
【摘要】等差數(shù)列求和公式教學(xué)目標(biāo)1.知識(shí)目標(biāo)(1)掌握等差數(shù)列前n項(xiàng)和公式,理解公式的推導(dǎo)方法;(2)能較熟練應(yīng)用等差數(shù)列前n項(xiàng)和公式求和。2.能力目標(biāo)經(jīng)歷公式的推導(dǎo)過程,體會(huì)數(shù)形結(jié)合的數(shù)學(xué)思想,體驗(yàn)從特殊到一般的研究方法,學(xué)會(huì)觀察、歸納、反思和邏輯推理的能力。3.情感目標(biāo)通過生動(dòng)具體的現(xiàn)實(shí)問題,激發(fā)學(xué)生探究的興趣和欲望,樹立學(xué)生求真的勇氣和自信心,增強(qiáng)學(xué)生學(xué)好數(shù)學(xué)的心
2025-04-23 07:44
【摘要】若數(shù)列的前n項(xiàng)和記為Sn,即Sn=a1+a2+a3+……+an-1+anSn-1∴當(dāng)n≥2時(shí),有an=Sn-Sn-110歲的高斯(德國)的算法:n首項(xiàng)與末項(xiàng)的和:1+100=101n第2項(xiàng)與倒數(shù)第2項(xiàng)的和:2+99=101n第3項(xiàng)與倒數(shù)第3項(xiàng)的和:3+98=101n………………………………………n
2024-08-28 20:31
【摘要】????????100321:引例一德國數(shù)學(xué)家高斯(數(shù)學(xué)王子)1+100=1012+99=1013+98=101??????50+51=1012)1001(100100??S5050?,,:如何求鋼管的總數(shù)多少是從上到下的鋼管數(shù)分別如圖引例二思考:如果在這堆鋼管的旁邊堆放著同樣一堆
2024-08-29 01:26
【摘要】等比數(shù)列的定義:一、知識(shí)回顧:1qaann??1通項(xiàng)公式:211??nnqaa等比中項(xiàng):3abGabGbGa?????2成等比,,1+2+22+23+24+…+263=?:二、等比數(shù)列求和公式對(duì)①、②進(jìn)行比較.S64=1+2+4+8+…+262+263①2S64=2+4+8+16
2024-08-29 01:49
【摘要】等差、等比數(shù)列的求和公式一、考綱要求:掌握等差的求和公式、等比數(shù)列的求和公式.二、教學(xué)目標(biāo):1、掌握等差數(shù)列前n項(xiàng)和公式及其推導(dǎo)過程2、掌握等比數(shù)列前n項(xiàng)和公式及其推導(dǎo)過程3、能熟練利用公式解決相關(guān)問題三、重點(diǎn)難點(diǎn)掌握公式的推導(dǎo)方法和公式的應(yīng)用教學(xué)過程:知識(shí)梳理:1.(1)等差數(shù)列的前項(xiàng)和(倒序相加法):公式1:公式2:;(2)若數(shù)
2025-06-13 21:56
【摘要】等差數(shù)列前n項(xiàng)的和教學(xué)設(shè)計(jì)一、教材分析本節(jié)教學(xué)內(nèi)容選自高中必修5,教材安排1課時(shí)。數(shù)列是中職數(shù)學(xué)教學(xué)的重要內(nèi)容之一,與實(shí)際生活有著緊密的聯(lián)系,而“等差數(shù)列前n項(xiàng)的和”一節(jié),更是體現(xiàn)了數(shù)列在生產(chǎn)實(shí)際中的廣泛應(yīng)用,如堆放物品總數(shù)的計(jì)算,分期付款、儲(chǔ)蓄等有關(guān)計(jì)算都用到本節(jié)課的一些知識(shí),因此,本節(jié)課對(duì)于學(xué)生能否樹立“有用的數(shù)學(xué)”的思想,有著重要作用。本節(jié)課的教學(xué)不僅關(guān)系到學(xué)生對(duì)數(shù)列
2025-05-06 08:49
【摘要】????????100321:引例一德國數(shù)學(xué)家高斯(數(shù)學(xué)王子)1+100=1012+99=1013+98=101??????50+51=1012)1001(100100??S5050?,,:如何求鋼管的總數(shù)多少是從上到下的鋼管數(shù)分別如圖引例二思考:如果在這堆鋼管的旁邊堆放著同樣一堆鋼管,如
2024-08-29 00:55
【摘要】等差數(shù)列求和公式:}{項(xiàng)和為的前數(shù)列nannsnnaaaas?????...321???1nnssna13211???????nnaaaas...10歲的高斯(德國)的算法:?首項(xiàng)與末項(xiàng)的和:1+100=101?第2項(xiàng)與倒數(shù)第2項(xiàng)的和:2+99=101?第3項(xiàng)與倒數(shù)第3項(xiàng)的和:3+98=101?
2024-08-29 01:37
【摘要】德國數(shù)學(xué)家高斯(數(shù)學(xué)王子)1+100=1012+99=1013+98=10150+51=1015050思考:如果在這堆鋼管的旁邊堆放著同樣一堆鋼管,如何求兩堆鋼管總數(shù)?2.聯(lián)想:(補(bǔ)成平行四邊形)59510100-25032105002255026(分割成一
2024-11-17 00:27
【摘要】等差數(shù)列求和公式一、鞏固與預(yù)習(xí)1.{an}為等差數(shù)列???,更一般的,,d=.2.a、b、
2024-12-02 16:22
【摘要】數(shù)列知識(shí)點(diǎn)及方法歸納1.等差數(shù)列的定義與性質(zhì)定義:(為常數(shù)),等差中項(xiàng):成等差數(shù)列前項(xiàng)和性質(zhì):是等差數(shù)列(1)若,則(2)數(shù)列仍為等差數(shù)列,仍為等差數(shù)列,公差為;(3)若三個(gè)成等差數(shù)列,可設(shè)為(4)若是等差數(shù)列,且前項(xiàng)和分別為,則(5)為等差數(shù)列(為常數(shù),是關(guān)于的常數(shù)項(xiàng)為0的二次函數(shù))的最值可求二次函數(shù)的最值;或者求出中的正、負(fù)分界項(xiàng),即:當(dāng),解
2024-08-18 09:35
【摘要】1等差數(shù)列求和公式:(1)Sn=n(a1+an)/2(2)Sn=na1+n(n-1)d/22等比數(shù)列求和公式:(1)Sn=1-qa1(1-qn)q≠1q≠1(2)Sn=1-qa1-anq當(dāng)q=1時(shí),Sn=na1練習(xí):求和1.1+2+3+……+n答案:Sn=n
2025-05-20 17:19
【摘要】數(shù)列的通項(xiàng)公式與求和練習(xí)1練習(xí)2練習(xí)3練習(xí)4練習(xí)5練習(xí)6練習(xí)7練習(xí)8等比數(shù)列的前項(xiàng)和Sn=2n-1,則練習(xí)9
2025-06-25 23:52
【摘要】......數(shù)列等差數(shù)列等比數(shù)列定義數(shù)列{an}的后一項(xiàng)與前一項(xiàng)的差an-an-1為常數(shù)d數(shù)列{an}的后一項(xiàng)與前一項(xiàng)的比為常數(shù)q(q≠0)專有名詞d為公差q為公比通項(xiàng)公式an=a1+(n-1)d
2025-04-23 01:43