【摘要】等比數(shù)列的前n項(xiàng)和教學(xué)過(guò)程導(dǎo)入新課師國(guó)際象棋起源于古代印度.相傳國(guó)王要獎(jiǎng)賞國(guó)際象棋的發(fā)明者.這個(gè)故事大家聽(tīng)說(shuō)過(guò)嗎?生知道一些,踴躍發(fā)言師“請(qǐng)?jiān)诘谝粋€(gè)格子里放上1顆麥粒,第二個(gè)格子里放上2顆麥粒,第三個(gè)格子里放上4顆麥粒,以此類推.每一個(gè)格子里放的麥粒都是前一個(gè)格子里放的麥粒的2倍.直到第64個(gè)
2024-11-27 21:23
【摘要】銅梁一中湯賢蓮學(xué)習(xí)目標(biāo);,通項(xiàng)公式和性質(zhì),增強(qiáng)應(yīng)用意識(shí).重點(diǎn):;,通項(xiàng)公式,性質(zhì)的應(yīng)用;難點(diǎn):知識(shí)的靈活應(yīng)用.教學(xué)法:類比教學(xué)法.復(fù)習(xí)一一.等比數(shù)列的定義二.等比數(shù)列的通項(xiàng)公式an=a1qn-1an=amqn-mq0時(shí),數(shù)列各項(xiàng)同號(hào)
2024-11-25 23:32
【摘要】等比數(shù)列的概念一.填空題(1).111,,369(2).lg3,lg9,lg27(3).6,8,10(4).3,33,9???na中,32a?,864a?,那么它的公比q???na是等比數(shù)列,na0,又知
2024-11-23 17:58
【摘要】等比數(shù)列的前n項(xiàng)和(第一課時(shí))創(chuàng)設(shè)情境明總:在一個(gè)月中,我第一天給你一萬(wàn),以后每天比前一天多給你一萬(wàn)元。林總:我第一天還你一分錢,以后每天還的錢是前一天的兩倍創(chuàng)設(shè)情境林總:哈哈!這么多錢!我可賺大了,我要是訂了兩個(gè)月,三個(gè)月那該多好?。」嫒绱藛?創(chuàng)設(shè)情境請(qǐng)你們幫林總分析一下
2024-11-25 15:04
【摘要】第9課時(shí):§等比數(shù)列(3)【三維目標(biāo)】:一、知識(shí)與技能1掌握“錯(cuò)位相減”的方法推導(dǎo)等比數(shù)列前項(xiàng)和公式;,并能運(yùn)用公式解決簡(jiǎn)單的實(shí)際問(wèn)題;二、過(guò)程與方法,提高學(xué)生的建模意識(shí)及探究問(wèn)題、分析與解決問(wèn)題的能力,體會(huì)公式探求過(guò)程中從特殊到一般的思維方法,滲透方程思想、分類討論思想及轉(zhuǎn)化思想,優(yōu)化思維品質(zhì).“錯(cuò)位相減法”這種算法中,體會(huì)“消除差
2025-06-13 23:07
【摘要】國(guó)際象棋起源于印度,關(guān)于國(guó)際象棋有這樣一個(gè)傳說(shuō),國(guó)王要獎(jiǎng)勵(lì)國(guó)際象棋的發(fā)明者,問(wèn)他有什么要求,發(fā)明者說(shuō):“請(qǐng)?jiān)谄灞P上的第一個(gè)格子上放1粒麥子,第二個(gè)格子上放2粒麥子,第三個(gè)格子上放4粒麥子,第四個(gè)格子上放8粒麥子,依次類推,直到第64個(gè)格子放滿為止。”國(guó)王慷慨地答應(yīng)了他。你認(rèn)為國(guó)王有能力滿足上述要求嗎?左
2024-11-26 08:48
【摘要】等差數(shù)列的公差:等差數(shù)列的通項(xiàng)公式:等差數(shù)列的定義:知識(shí)回顧:等差數(shù)列的通項(xiàng)公式是如何推導(dǎo)?觀察思考:以下幾個(gè)數(shù)列有何共同特點(diǎn)?(1)2,4,8,16,…(2)2,2,4,4…22(4)5,5,5,5,…(3)1,,,,…
【摘要】等比數(shù)列的概念(二)等比數(shù)列的通項(xiàng)公式(二)課時(shí)目標(biāo).,能用性質(zhì)靈活解決問(wèn)題.1.一般地,如果m,n,k,l為正整數(shù),且m+n=k+l,則有______________,特別地,當(dāng)m+n=2k時(shí),am·an=________.2.在等比數(shù)列{an}中,每隔k項(xiàng)(
2024-12-13 10:14
【摘要】等比數(shù)列的概念(一)等比數(shù)列的通項(xiàng)公式(一)課時(shí)目標(biāo),能夠利用定義判斷一個(gè)數(shù)列是否為等比數(shù)列.2.掌握等比數(shù)列的通項(xiàng)公式并能簡(jiǎn)單應(yīng)用.,能夠應(yīng)用等比中項(xiàng)的定義解決有關(guān)問(wèn)題.1.如果一個(gè)數(shù)列從第____項(xiàng)起,每一項(xiàng)與它的前一項(xiàng)的____都等于同一個(gè)常數(shù),那么這個(gè)數(shù)列叫做等比數(shù)列.這個(gè)常數(shù)叫做等比數(shù)列的___
【摘要】課題:等比數(shù)列的概念班級(jí):姓名:學(xué)號(hào):第學(xué)習(xí)小組【學(xué)習(xí)目標(biāo)】理解等比數(shù)列的概念;體會(huì)等比數(shù)列是用來(lái)刻畫一類離散現(xiàn)象的重要數(shù)學(xué)模型。【課前預(yù)習(xí)】1.觀察下列數(shù)列有何特點(diǎn)?(1)1,2,4,8,…(2)10,2110?,
2024-12-13 10:13
【摘要】談一類遞推數(shù)列求通項(xiàng)公式的典型方法除了我們經(jīng)常接觸的最基本的等差數(shù)列和等比數(shù)列之外,我們還經(jīng)常遇到一類遞推數(shù)列求通項(xiàng)的問(wèn)題.它的基本形式是:已知1a及遞推關(guān)系1nnapaq???((1)0)pqp??求na.其求解方法有多種,下面結(jié)合具體例子介紹三種較為典型的解法.題目:在數(shù)列{}na(不是常數(shù)數(shù)列)中,1122nn
2024-12-16 20:21
【摘要】A等比數(shù)列等比數(shù)列×國(guó)際象棋起源于印度,關(guān)于國(guó)際象棋有這樣一個(gè)傳說(shuō),國(guó)王要獎(jiǎng)勵(lì)國(guó)際象棋的發(fā)明者,問(wèn)他有什么要求,發(fā)明者說(shuō):“請(qǐng)?jiān)谄灞P上的第一個(gè)格子上放1粒麥子,第二個(gè)格子上放2粒麥子,第三個(gè)格子上放4粒麥子,第四個(gè)格子上放8粒麥子,依次類推,直到第64個(gè)格子放滿為止?!眹?guó)王慷慨地答應(yīng)了他。
2025-08-11 19:27
【摘要】第一篇: 2.4等比數(shù)列 (一)教學(xué)目標(biāo) 1`.知識(shí)與技能:理解等比數(shù)列的概念;掌握等比數(shù)列的通項(xiàng)公式;理解這種數(shù)列的模型應(yīng)用. 2.過(guò)程與方法:通過(guò)豐富實(shí)例抽象出等比數(shù)列模型,經(jīng)歷由發(fā)現(xiàn)幾個(gè)...
2024-11-05 04:12
【摘要】等比數(shù)列測(cè)試題A組一.填空題(本大題共8小題,每小題5分,共40分)1.在等比數(shù)列{}na中,3620,160aa??,則na=.1.20×:q3=16020=8,q==20×2n-3.,首項(xiàng)為98,末項(xiàng)為13,公比為23,則
2024-12-13 09:21
【摘要】§等比數(shù)列2.等比數(shù)列自主學(xué)習(xí)知識(shí)梳理1.如果一個(gè)數(shù)列從第________項(xiàng)起,每一項(xiàng)與它的前一項(xiàng)的________都等于同一個(gè)常數(shù),那么這個(gè)數(shù)列叫做等比數(shù)列.這個(gè)常數(shù)叫做等比數(shù)列的________,通常用字母q表示(q≠0).2.等比數(shù)列的通項(xiàng)公式:____________.3.等
2024-11-27 23:20