【摘要】1《探究二次函數(shù)在閉區(qū)間上的最值》教案教學目標:初步掌握解決二次函數(shù)在閉區(qū)間上最值問題的一般解法,總結(jié)歸納出二次函數(shù)在閉區(qū)間上最值的一般規(guī)律,會運用二次函數(shù)在閉區(qū)間上的圖像研究相關(guān)問題。:通過實驗,觀察影響二次函數(shù)在閉區(qū)間上的最值的因素,在此基礎上討論探究出解決二次函數(shù)在閉區(qū)間上最值問題的一般解法和規(guī)律。、態(tài)度與價值觀:
2024-11-29 23:43
【摘要】2020年9月15日給定二次函數(shù):y=2x2-8x+1,我們怎么求它的最值。Oxy2-7解:y=2(x-2)2-7,由圖象知,當x=2時,y有最小值,ymin=f(2)=-7,沒有最大值。小結(jié)、二次函數(shù)y=ax2+bx+c(a≠0)中,y取得最小值當自變量x=
2024-11-19 21:11
【摘要】二次函數(shù)的最值問題重點掌握閉區(qū)間上的二函數(shù)的最值問題難點了解并會處理含參數(shù)的二次函數(shù)的最值問題核心區(qū)間與對稱軸的相對位置思想數(shù)形結(jié)合分類討論復習引入頂點式:y=a(x-m)2+n(a0)兩根式:y=a(x-x1)(x-x2)(a0)
【摘要】二次函數(shù)的最值二次函數(shù)的最值問題重點掌握閉區(qū)間上的二函數(shù)的最值問題難點了解并會處理含參數(shù)的二次函數(shù)的最值問題核心區(qū)間與對稱軸的相對位置思想數(shù)形結(jié)合分類討論復習引入頂點式:y=a(x-m)2+n(a0)兩根式:y
2024-11-18 00:49
【摘要】《二次函數(shù)在閉區(qū)間上的最值問題》教學設計潼關(guān)中學郭傳濤1.教材分析二次函數(shù)是高中數(shù)學的重要內(nèi)容,是在學習了《函數(shù)》一節(jié)內(nèi)容之后編排的。通過本節(jié)課的學習,既可以對二次函數(shù)的概念等知識進一步鞏固和深化,又可以為后面進一步學習其它函數(shù),尤其是利用函數(shù)的圖像來研究函數(shù)的性質(zhì)打下堅實的基礎,而含參數(shù)的二次函數(shù)是進入高中以后學生遇到的新的問題,雖然在初中學生接觸過二次函數(shù),但是初中的要求比
2025-03-30 06:25
【摘要】閉區(qū)間上二次函數(shù)的最值問題一、?教材分析1、教學背景二次函數(shù)是重要的初等函數(shù)之一,很多問題都要化歸為二次函數(shù)來處理。二次函數(shù)又與一元二次方程、一元二次不等式有著密切的聯(lián)系,因此必須熟練掌握它的性質(zhì),并能靈活地運用它的性質(zhì)去解決實際問題。二次函數(shù)在高考中占有重要的地位,而二次函數(shù)在閉區(qū)間上的最值在各個方面都有重要的應用,主要考察我們分類討論和數(shù)形結(jié)合思想。這節(jié)課我們主要學會應
2025-05-08 23:56
【摘要】二次函數(shù)在給定區(qū)間上的最值問題【學前思考】二次函數(shù)在閉區(qū)間上取得最值時的,只能是其圖像的頂點的橫坐標或給定區(qū)間的端點.因此,影響二次函數(shù)在閉區(qū)間上的最值主要有三個因素:拋物線的開口方向、對稱軸以及給定區(qū)間的位置.在這三大因素中,最容易確定的是拋物線的開口方向(與二次項系數(shù)的正負有關(guān)),而關(guān)于對稱軸與給定區(qū)間的位置關(guān)系的討論是解決二次函數(shù)在給定區(qū)間上的最值問題的關(guān)鍵.
2025-04-10 04:24
【摘要】第十四講二次函數(shù)的同象和性質(zhì)【重點考點例析】考點一:二次函數(shù)圖象上點的坐標特點例1已知二次函數(shù)y=a(x-2)2+c(a>0),當自變量x分別取、3、0時,對應的函數(shù)值分別:y1,y2,y3,,則y1,y2,y3的大小關(guān)系正確的是( )A.y3<y2<y1B.y1<y2<y3C.y2<y1<y3D.y3<y1<y2對應訓練1.已知二
2025-04-10 04:25
【摘要】用待定系數(shù)法求二次函數(shù)的解析式y(tǒng)xo課前復習例題選講課堂小結(jié)課堂練習課件制作:宋榮禮課前復習二次函數(shù)解析式有哪幾種表達式??一般式:y=ax2+bx+c?頂點式:y=a(x-h)2+k?兩根式:y=a(x-x1)(x
2024-11-18 08:38
【摘要】一、頂點、平移1、拋物線y=-(x+2)2-3的頂點坐標是().(A)(2,-3);(B)(-2,3);(C)(2,3);(D)(-2,-3)2、拋物線的頂點坐標是()A.(1,0) B.(-1,0) C.(-2,1) D.(2,-1)3、拋物線y=x2-2x-3的頂點坐標是.4、下
2025-08-10 23:49
【摘要】試題分類匯編----二次函數(shù)一、頂點、平移1、拋物線y=-(x+2)2-3的頂點坐標是().(A)(2,-3);(B)(-2,3);(C)(2,3);(D)(-2,-3)2、拋物線的頂點坐標是()A.(1,0) B.(-1,0) C.(-2,1) D.(2,-1)3、拋物線y=x2-2x-3的頂點坐標是
2025-03-30 06:26
【摘要】班級姓名2018屆初三數(shù)學培優(yōu)材料(一)函數(shù)實際應用專題(一)例題1小華的爸爸在國際商貿(mào)城開專賣店專銷某種品牌的計算器,進價12元∕只,售價20元∕只.為了促銷,專賣店決定凡是買10只以上的,每多買一只,,但是最低價為16元∕只.(1)顧客一次至少買多少只,才能以最低價購買?(2)寫出當一次購買x只時(x>10),利潤y
2025-06-29 13:54
【摘要】?1.判斷正誤:?(1)若函數(shù)f(x)在區(qū)間(a,b)和(c,d)上均為增函數(shù),則函數(shù)f(x)在區(qū)間(a,b)∪(c,d)上也是增函數(shù).?(2)若函數(shù)f(x)和g(x)在各自的定義域上均為增函數(shù),則f(x)+g(x)在它們定義域的交集(非空)上是增函數(shù).?[答案](1)×(
2024-11-18 12:26
【摘要】廣東省深圳市第三高級中學數(shù)學必修一《函數(shù)的最大(小)值》課件一、問題導入的,在減區(qū)間上時隨著自變量的增大而降低的,那么函數(shù)的圖象有最高點和最低點嗎?2.函數(shù)圖象上升與下降反映了函數(shù)的單調(diào)性,如果函數(shù)的圖象存在最高點或最低點,它又反映了函數(shù)的什么性質(zhì)?二、探索新知——最大值觀察下列兩個函數(shù)圖象:思考1:這兩
2024-11-21 12:03