【摘要】二次函數(shù)綜合問題1:已知函數(shù)在區(qū)間內(nèi)單調(diào)遞減,則a的取值范圍是變式1:已知函數(shù)在區(qū)間(,1)上為增函數(shù),那么的取值范圍是_________.變式2:已知函數(shù)在上是單調(diào)函數(shù),求實(shí)數(shù)的取值范圍.2:已知函數(shù)在區(qū)間[0,m]上有最大值3,最小值2,則m的取值范圍是變式1:若函數(shù)的最大值為M,最小值為m,則M+m的值等于__
2025-04-10 04:25
【摘要】二次函數(shù)中的存在性問題1.如圖,矩形OABC在平面直角坐標(biāo)系xOy中,點(diǎn)A在x軸的正半軸上,點(diǎn)C在y軸的正半軸上,OA=4,OC=3,若拋物線的頂點(diǎn)在BC邊上,且拋物線經(jīng)過O,A兩點(diǎn),直線AC交拋物線于點(diǎn)D.(1)求拋物線的解析式;(2)求點(diǎn)D的坐標(biāo);(3)若點(diǎn)M在拋物線上,點(diǎn)N在x軸上,是否存在以A,D,M,N為頂點(diǎn)的四邊形是平行四邊形?若存在,求出點(diǎn)N的坐標(biāo);若不存在,
2025-04-10 04:23
【摘要】二次方程根的分布與二次函數(shù)在閉區(qū)間上的最值歸納1、一元二次方程根的分布情況設(shè)方程的不等兩根為且,相應(yīng)的二次函數(shù)為,方程的根即為二次函數(shù)圖象與軸的交點(diǎn),它們的分布情況見下面各表(每種情況對應(yīng)的均是充要條件)表一:(兩根與0的大小比較即根的正負(fù)情況)分布情況兩個(gè)負(fù)根即兩根都小于0兩個(gè)正根即兩根都大于0一正根一負(fù)根即一個(gè)根小于0,一個(gè)大于0大致圖象()
2025-05-22 01:34
【摘要】二次函數(shù)專題:角度一、有關(guān)角相等1、已知拋物線的圖象與軸交于、兩點(diǎn)(點(diǎn)在點(diǎn)的左邊),與軸交于點(diǎn),,過點(diǎn)作軸的平行線與拋物線交于點(diǎn),拋物線的頂點(diǎn)為,直線經(jīng)過、兩點(diǎn).(1)求此拋物線的解析式;(2)連接、、,試比較和的大小,并說明你的理由.對于第(2)問,比較角的大小a、如果是特殊角,也就是我們能分別計(jì)算出這兩個(gè)角的大小,那么他們之間的大小關(guān)系就清楚了b
【摘要】高考最全二次方程根的分布?xì)w納1、一元二次方程根的分布情況設(shè)方程的不等兩根為且,相應(yīng)的二次函數(shù)為,方程的根即為二次函數(shù)圖象與軸的交點(diǎn),它們的分布情況見下面各表(每種情況對應(yīng)的均是充要條件)表一:(兩根與0的大小比較即根的正負(fù)情況)分布情況兩個(gè)負(fù)根即兩根都小于0兩個(gè)正根即兩根都大于0一正根一負(fù)根即一個(gè)根小于0,一個(gè)大于0大致圖象()得出的結(jié)論
2025-06-13 23:44
【摘要】二次函數(shù)中絕對值問題的求解策略二次函數(shù)是高中函數(shù)知識中一顆璀璨的“明珠”,而它與絕對值知識的綜合,往往能夠演繹出一曲優(yōu)美的“交響樂”,故成為高考“新寵”。二次函數(shù)和絕對值所構(gòu)成的綜合題,由于知識的綜合性、題型的新穎性、解題方法的靈活性、思維方式的抽象性,學(xué)習(xí)解題時(shí)往往不得要領(lǐng),現(xiàn)從求解策略出發(fā),對近年來各類考試中的部分相關(guān)考題,進(jìn)行分類剖析,歸納出一般解題思考方法。一、適時(shí)用分類,討
【摘要】二次函數(shù)動點(diǎn)問題題型Ⅰ因動點(diǎn)而產(chǎn)生的面積問題(2012?張家界)如圖,拋物線y=﹣x2+x+2與x軸交于C、A兩點(diǎn),與y軸交于點(diǎn)B,OB=2.點(diǎn)O關(guān)于直線AB的對稱點(diǎn)為D,E為線段AB的中點(diǎn).(1)分別求出點(diǎn)A、點(diǎn)B的坐標(biāo);(2)求直線AB的解析式;(3)若反比例函數(shù)y=的圖象過點(diǎn)D,求k值;(4)兩動點(diǎn)P、Q同時(shí)從點(diǎn)A出發(fā),分別沿AB、AO方向向B、O移動,
2025-04-10 04:24
【摘要】二次函數(shù)中的數(shù)形結(jié)合一、選擇題1.對于二次函數(shù)y=(x﹣1)2+2的圖象,下列說法正確的是( ?。〢.開口向下B.對稱軸是x=﹣1C.頂點(diǎn)坐標(biāo)是(1,2)D.與x軸有兩個(gè)交點(diǎn)2.已知二次函數(shù)y=ax2+bx+c(a,b,c是常數(shù),且a≠0)的圖象如圖所示,則一次函數(shù)y=cx+與反比例函數(shù)y=在同一坐標(biāo)系內(nèi)
【摘要】二次函數(shù)零點(diǎn)問題【探究拓展】探究1:設(shè)分別是實(shí)系數(shù)一元二次方程和的一個(gè)根,且求證:方程有且僅有一根介于之間.變式1:已知函數(shù)f(x)=ax2+4x+b(a0,a、b∈R),設(shè)關(guān)于x的方程f(x)=0的兩實(shí)根為x1、x2,方程f(x)=x的兩實(shí)根為α、β.(1)若|α-β|=1,求a、b的關(guān)系式;(2)若a、b均為負(fù)整數(shù)
【摘要】咸陽育才中學(xué)電子教案課題。二次函數(shù)的圖像主備郝妮濤審核人上課人上課時(shí)間教學(xué)目標(biāo)知識與能力:(1)理解二次函數(shù)中參數(shù)a,b,c,h,k對其圖像的影響。(2)掌握二次函數(shù)的性質(zhì)與圖象,掌握從函數(shù)的性質(zhì)推斷圖象的方研究法。過程與方法:掌握從函數(shù)解析式、性質(zhì)出發(fā)去認(rèn)識函數(shù)圖象的高度理解和研究函數(shù)的方法。情感態(tài)度和價(jià)值觀:讓學(xué)生感受數(shù)學(xué)思想
【摘要】二次函數(shù)中的面積計(jì)算問題[典型例題]第10題例.如圖,二次函數(shù)圖象與軸交于A,B兩點(diǎn)(A在B的左邊),與軸交于點(diǎn)C,頂點(diǎn)為M,為直角三角形,圖象的對稱軸為直線,點(diǎn)是拋物線上位于兩點(diǎn)之間的一個(gè)動點(diǎn),則的面積的最大值為(C)A.B.C.D.二次函數(shù)中面積問題常見類型:一、選擇填空中簡單應(yīng)用
【摘要】二次函數(shù)圖象中的面積問題姓名1、(2010寧波20題)yxCAOB第20題如圖,已知二次函數(shù)的圖象經(jīng)過A(2,0)、B(0,-6)兩點(diǎn)。(1)求這個(gè)二次函數(shù)的解析式;(2)設(shè)該二次函數(shù)的對稱軸與軸交于點(diǎn)C,連結(jié)BA、BC,求△ABC的面積。變式:(3)該函數(shù)圖象與x軸的
2025-06-13 16:34
【摘要】課題:一次函數(shù)與二次函數(shù)的交點(diǎn)及交點(diǎn)的判斷目的:掌握一次函數(shù)與二次函數(shù)的交點(diǎn)坐標(biāo)的算法會用判別式判斷一次函數(shù)與二次函數(shù)有無交點(diǎn)初步認(rèn)識函數(shù)圖像中的集合問題重點(diǎn):一次函數(shù)與二次函數(shù)的交點(diǎn)坐標(biāo)的計(jì)算難點(diǎn):理解函數(shù)交點(diǎn)坐標(biāo)的意義課時(shí):一課時(shí)過程:引入(1)看函數(shù)圖像通過函數(shù)特點(diǎn),性質(zhì)求解析式(2)通過解析式畫函數(shù)圖像通過觀察發(fā)現(xiàn)在同一坐標(biāo)系
【摘要】二次函數(shù)題目專練一、選擇題=x2+2x-2的頂點(diǎn)坐標(biāo)是()A.(2,-2)B.(1,-2)C.(1,-3)D.(-1,-3),則下列結(jié)論正確的是(?。粒產(chǎn)b>0,c>0?。拢產(chǎn)b>0,c<0?。茫產(chǎn)b<0,c>0 ?。模產(chǎn)b<0,c<0 第2題圖第3題圖
【摘要】城關(guān)中學(xué)二分校九年級上冊數(shù)學(xué)電子教案二次函數(shù)設(shè)計(jì)人:宋旺平教學(xué)目標(biāo):了解什么是二次函數(shù)教學(xué)重點(diǎn):二次函數(shù)的有關(guān)概念教學(xué)難點(diǎn):二次函數(shù)的有關(guān)概念的應(yīng)用課時(shí)安排:1課時(shí)教學(xué)步驟:一、自學(xué)指導(dǎo):—P29頁的內(nèi)容(5分鐘)。①、②、③有什么特點(diǎn)?,弄清各項(xiàng)及其系數(shù)。.二、自學(xué)檢測:1.下列函數(shù)中,哪些是二次函數(shù)?(1)y=
2025-04-23 01:33