【摘要】二面角求法歸納18題,通常是立體幾何(12-14分),本題考查空間線面平行、線面垂直、面面垂直的判斷與證明,考查二面角的求法以及利用向量知識(shí)解決幾何問題的能力,同時(shí)考查空間想象能力、推理論證能力和運(yùn)算能力。以下是求二面角的五種方法總結(jié),及題形歸納。定義法:從一條直線出發(fā)的兩個(gè)半平面所組成的圖形叫做二面角,這條直線叫做二面角的棱,這兩個(gè)半平面叫做二面角的面,
2025-03-30 06:31
【摘要】文科立體幾何線面角二面角專題學(xué)校:___________姓名:___________班級(jí):___________考號(hào):___________一、解答題1.如圖,在三棱錐P?ABC中,AB=BC=22,PA=PB=PC=AC=4,O為AC的中點(diǎn).(1)證明:PO⊥平面ABC;(2)若點(diǎn)M在棱BC上,且二面角M?PA?C為30°,求PC與平面PAM所成角的正
2025-07-01 16:28
【摘要】立體幾何綜合訓(xùn)練(45)二面角二面角問題因其需要充分運(yùn)用立體幾何第一章的線線、線面、面面關(guān)系,具有綜合性強(qiáng),靈活性大的特點(diǎn),因此,一直成為高考、會(huì)考的熱點(diǎn)。求解二面角問題一般可分為直接法和間接法二大類。一、直接法直接法就是根據(jù)已知條件,首先作出二面角的平面角,再求平面角大小的方法。求作二面角平面角的方法主要有:lab①利用定義即在二面角-l-的
2024-10-08 17:11
【摘要】 知識(shí)點(diǎn):二面角的求法一、思想方法求二面角的大小,是立體幾何計(jì)算與運(yùn)用中的一個(gè)重點(diǎn)和難點(diǎn).直接法的核心是作(或找)出二面角的平面角,間接法可利用投影、異面直線、空間向量等。常用的方法有以下幾種:方法一(定義法)即從二面角棱上一點(diǎn)在兩個(gè)面內(nèi)分別引棱的垂線如圖1。方法二(三垂線法)在二面角的一
2025-03-31 06:41
【摘要】1.如圖,四棱錐中,底面為矩形,底面,,點(diǎn)M在側(cè)棱上,=60°(I)證明:M在側(cè)棱的中點(diǎn)(II)求二面角的大小。2.如圖,已知四棱錐P-ABCD,底面ABCD為菱形,PA⊥平面ABCD,,E,F(xiàn)分別是BC,PC的中點(diǎn).(Ⅰ)證明:AE⊥PD;(Ⅱ)若H為PD上的動(dòng)點(diǎn),EH與平面PAD所成最大角的正切值為,求二面角E—AF—C的余弦值.E
2025-03-31 06:42
【摘要】立體幾何專題之二面角問題北京大學(xué)光華管理學(xué)院何洋立體幾何高考情況簡(jiǎn)述2022年2022年2022年文科理科文科理科文科理科選擇題222222填空題111110解答題111111二面角問題高考情況簡(jiǎn)述?除2022年北京
2025-07-26 07:01
【摘要】立體幾何二面角求法一:知識(shí)準(zhǔn)備1、二面角的概念:從一條直線出發(fā)的兩個(gè)半平面所組成的圖形叫做二面角,這條直線叫做二面角的棱,這兩個(gè)半平面叫做二面角的面.2、二面角的平面角的概念:平面角是指以二面角的棱上一點(diǎn)為端點(diǎn),在兩個(gè)半平面內(nèi)分別做垂直于棱的兩條射線,這兩條射線所成的角就叫做該二面角的平面角。3、二面角的大小范圍:[0°,180°]4、三垂線定理:平面內(nèi)
2025-03-31 03:49
【摘要】長(zhǎng)寧中學(xué)李昌源求二面角的平面角一、教學(xué)目標(biāo)1.理解和掌握二面角的有關(guān)概念;掌握二面角的平面角的常見求法.2.用轉(zhuǎn)化的思維方法將二面角問題轉(zhuǎn)化為其平面角問題,進(jìn)一步培養(yǎng)學(xué)生的空間想象能力和分析、解決問題的能力.二、教學(xué)重點(diǎn)、難點(diǎn)1.教學(xué)重點(diǎn):二面角的平面角的常見求法.2.教學(xué)難點(diǎn):如何選取恰當(dāng)?shù)奈恢煤头椒ㄗ鞒龆娼堑?/span>
2024-11-17 06:01
【摘要】用向量法求二面角例1:在三棱柱ABO—A1B1O1中,平面OBB1O1⊥平面OAB,∠O1OB=600,∠BOA=900,OB=OO1=2,AO=.求3(1)二面角O—AB—O1的大小AOBA1O1B1xyz42arccos例2:已知四棱錐P—ABC
2024-11-17 08:07
【摘要】平面法向量在立體幾何中的應(yīng)用——利用法向量求二面角(一)平面的法向量的定義:n如果n??,那么向量n叫做平面?的法向量?1、利用平面法向量求直線與平面所成的角:直線與平面所成的角等于平面的法向量所在的直線與已知直線的夾角的余角。(二
2024-12-02 14:09
【摘要】利用線面角和二面角本質(zhì)解題沈勤龍某天聽了一節(jié)高三某老師的試卷講評(píng)課,很有收獲。覺得應(yīng)該寫出來與各位分享,并希望各位不斷提醒自己,在學(xué)習(xí)數(shù)學(xué)的過程中,應(yīng)不斷思考,不斷追求本質(zhì)。首先,我們要認(rèn)識(shí)線面角和二面角的兩個(gè)本質(zhì)(不作展開,自行理解或證明):本質(zhì)1:一條斜線與已知平面中的任一條直線所成的角中,線面角最小。本質(zhì)2:對(duì)于一個(gè)銳二面角,在其中一個(gè)半平面中的任一條直線與另一個(gè)半平面
2025-03-30 12:45
【摘要】第九章直線、平面、簡(jiǎn)單幾何體懷化鐵路第一中學(xué)二面角(4)——二面角習(xí)題課第九章直線、平面、簡(jiǎn)單幾何體懷化鐵路第一中學(xué)一、朝花夕拾二、兩個(gè)平面垂直的判定定理三、兩個(gè)平面垂直的性質(zhì)定理一、兩個(gè)平面垂直的定義相交成直二面角的兩個(gè)平面,叫做互相垂直的平面CDB
2024-11-14 15:28
【摘要】βabABCD設(shè)異面直線a、b的夾角為θcosθ=??AB,CDcos||=AB·CD·AB||CD||θ=??AB,CD或θ=π-?
2025-05-22 22:58
【摘要】二面角仔細(xì)觀察慎重思考認(rèn)真解答開拓創(chuàng)新注意積累勇于探索知識(shí)再現(xiàn)什么是二面角?由兩個(gè)半平面圍成的幾何圖形ιβα敘述二面角平面角的形成過程ιPBAβα在平面α和平面β的交線ι上任取一點(diǎn)P在平面α內(nèi)
2024-11-09 16:40
【摘要】1、二面角及二面角的平面角的有關(guān)定義平面的一條直線把平面分為兩部分,其中的每一部分都叫做一個(gè)半平面。從一條直線出發(fā)的兩個(gè)半平面所組成的圖形叫做二面角。(1)半平面(2)二面角lαlα這條直線叫做二面角的棱,每個(gè)半平面叫做二面角的面。αβBOAa
2024-11-17 23:31