【摘要】第一篇:八年級幾何證明題 八年級證明題一 八年級幾何證明題 1、已知:在⊿ABC中,AB=AC,延長AB到D,使AB=BD,E是AB的中點。求證:CD=2CE。 C2、已知:在⊿ABC中,作∠...
2024-10-15 20:50
【摘要】天文教育初中數(shù)學四邊形試題1.已知:在矩形ABCD中,AE^BD于E,∠DAE=3∠BAE,求:∠EAC的度數(shù)。_O_A_B_D_C_E_E_F_A_B_D
2025-03-30 02:11
【摘要】八年級下冊幾何證明題精選1、如圖,矩形中,與交于點,于于,求證:2、如圖,在平行四邊形中,分別為的角平分線,試證明:四邊形是矩形3、如圖,矩形的對角線相交于點,∥∥相交于,請判斷四邊形的形狀,并說明理由4、如圖,△中,的平分線交高于點,交于,為垂足,請證明:四邊形是菱形5、如圖,平行四邊形的對角線相交于點,
【摘要】八年級上冊經(jīng)典幾何題分類訓練常見輔助線的作法有以下幾種:1)遇到等腰三角形,可作底邊上的高,利用“三線合一”的性質(zhì)解題,思維模式是全等變換中的“對折”.2)遇到三角形的中線,倍長中線,使延長線段與原中線長相等,構造全等三角形,利用的思維模式是全等變換中的“旋轉”.3)遇到角平分線,可以自角平分線上的某一點向角的兩邊作垂線,利用的思維模式是三角形全等變換中的“對折”,所考知識
2025-03-30 02:10
【摘要】第一篇:八年級數(shù)學幾何題證明技巧 能達培訓學校內(nèi)部資料 能達學校八年級數(shù)學講義 姓名:日期:2006-1-2 4輔助線的添加技巧 人說幾何很困難,難點就在輔助線。輔助線,如何添?把握定理和概...
2024-11-09 00:50
【摘要】八年級上冊幾何證明題專項練習1.如圖,△ABC、△CDE均為等腰直角三角形,∠ACB=∠DCE=90°,點E在AB上.求證:△CDA≌△CEB.2.如圖,BD⊥AC于點D,CE⊥AB于點E,AD=AE.求證:BE=CD.3.如圖,已知點B,E,C,F(xiàn)在一條直線上,AB=DF,AC=DE,∠A=∠D.(1)求證:AC∥D
2025-03-30 02:09
【摘要】常見的輔助線的作法“三線合一”法:遇到等腰三角形,可作底邊上的高,利用“三線合一”的性質(zhì)解題:倍長中線,使延長線段與原中線長相等,構造全等三角形:(1)可以自角平分線上的某一點向角的兩邊作垂線,(2)可以在角平分線上的一點作該角平分線的垂線與角的兩邊相交,形成一對全等三角形。(3)可以在該角的兩邊上,距離角的頂點相等長度的位置上截取二點,然后從這兩點再向角平分線上的某點作邊線,構造一
2025-03-30 02:14
【摘要】八年級上冊幾何題專題訓練50題1.如圖,已知△EAB≌△DCE,AB,EC分別是兩個三角形的最長邊,∠A=∠C=35°,∠CDE=100°,∠DEB=10°,求∠AEC的度數(shù).2.如圖,點E、A、B、F在同一條直線上,AD與BC交于點O,已知∠CAE=∠DBF,AC=:∠C=∠D,OP平分∠AOB
2025-03-30 12:38
【摘要】八年級數(shù)學下冊幾何證明題練習:△ABC的兩條高BD,CE交于點F,點M,N,分別是AF,BC的中點,連接ED,MN;(1)證明:MN垂直平分ED;(2))若∠EBD=∠DCE=45°,判斷以M,E,N,D為頂點的四邊形的形狀,并證明你的結論;,△BEF是等腰直角三角形,∠BEF=90°,BE=
2025-04-10 03:27
【摘要】第一篇:八年級幾何證明1 八年級幾何證明精選 一、基礎題: 1、在ΔABC中,a,b,c分別是∠A,∠B,∠C的對邊,且∠A=60°,其三邊a,b,c滿足下列關a-b-c2系,、在ΔABC中,A...
2024-11-16 03:17
【摘要】幾何證明題的技巧1.幾何證明是平面幾何中的一個重要問題,它有兩種基本類型:一是平面圖形的數(shù)量關系;二是有關平面圖形的位置關系。這兩類問題常??梢韵嗷マD化,如證明平行關系可轉化為證明角等或角互補的問題。2.掌握分析、證明幾何問題的常用方法:(1)綜合法(由因導果),從已知條件出發(fā),通過有關定義、定理、公理的應用,逐步向前推進,直到問題解決;(2)分析法(執(zhí)果索因)從
2025-06-30 04:28
【摘要】......八年級幾何全等證明題歸納,梯形ABCD中,AD∥BC,∠DCB=45°,BD⊥CD.過點C作CE⊥AB于E,交對角線BD于F,點G為BC中點,連接EG、AF.求證:CF=AB+AF.證明:在線段CF上截取CH
【摘要】如圖,在△ABC中,點O是AC邊上的一個動點(點O不與A、C兩點重合),過點O作直線MN∥BC,直線MN與∠BCA的平分線相交于點E,與∠DCA(△ABC的外角)的平分線相交于點F.(1)OE與OF相等嗎?為什么?(2)探究:當點O運動到何處時,四邊形AECF是矩形?并證明你的結論.(3)在(2)中,當∠ACB等于多少時,四邊形AECF為正方形.(不要求說理由)
2025-04-10 03:25
2025-04-13 20:38
【摘要】八年級習題練習四、證明題:(每個5分,共10分)1、在平行四邊形ABCD中,AE⊥BC于E,CF⊥AD于F,求證:BE=DF。2、在平行四邊形DECF中,B是CE延長線上一點,A是CF延長線上一點,連結AB恰過點D,求證:AD·BE=DB·EC五
2025-06-28 17:09