【摘要】課時(shí)目標(biāo):1、了解空間動(dòng)點(diǎn)集合的類型2、探索“動(dòng)點(diǎn)問題”的解題思路問題一:動(dòng)點(diǎn)P滿足如下條件時(shí)圓橢圓雙曲線拋物線直線球面平面內(nèi)到定點(diǎn)距離等于定長平面內(nèi)到兩定點(diǎn)距離之和為定值(大于定點(diǎn)間的距離)平面內(nèi)到兩定點(diǎn)距離之差的絕對(duì)值為定值(小于定點(diǎn)間的距離)
2024-08-18 10:16
【摘要】借助向量解立體幾何問題知識(shí)要點(diǎn)(其中為向量的夾角)。一、求點(diǎn)到平面的距離定義:一點(diǎn)到它在一個(gè)平面內(nèi)的正射影的距離叫做點(diǎn)到平面的距離。即過這個(gè)點(diǎn)到平面垂線段的長度。一般方法:利用定義先做出過這個(gè)點(diǎn)到平面的垂線段,再計(jì)算這個(gè)垂線段的長度。PBA向量法:PA
2024-11-15 01:07
【摘要】立體幾何中的探索性問題一、探索平行關(guān)系1.[2016·棗強(qiáng)中學(xué)模擬]如圖所示,在正四棱柱A1C中,E,F(xiàn),G,H分別是棱CC1,C1D1,D1D,DC的中點(diǎn),N是BC的中點(diǎn),點(diǎn)M在四邊形EFGH及其內(nèi)部運(yùn)動(dòng),則M只需滿足條件________,就有MN∥平面B1BDD1.(注:請(qǐng)?zhí)钌弦粋€(gè)你認(rèn)為正確的條件,不必考慮全部可能的情況)答案:M位于線段FH上(答案不唯
2025-03-31 06:43
【摘要】第一篇:立體幾何證明問題 證明問題 ,E、F分別是長方體邊形 .-的棱A、C的中點(diǎn),求證:四邊形是平行四 ,ABCD為正方形,SA⊥平面ABCD,過點(diǎn)A且垂直于SC的平面分別交SB、SC、SD...
2024-10-14 10:12
【摘要】空間向量在立幾中應(yīng)用空間向量在立體幾何中的應(yīng)用空間向量在立幾中應(yīng)用利用向量判斷位置關(guān)系利用向量可證明四點(diǎn)共面、線線平行、線面平行、線線垂直、線面垂直等問題,其方法是通過向量的運(yùn)算來判斷,這是數(shù)形結(jié)合的典型問題空間向量在立幾中應(yīng)用例1、在正方體AC1中,E、F分別是BB1、CD的中點(diǎn),求
2025-07-26 06:40
【摘要】第一篇:立體幾何線面平行問題 線線問題及線面平行問題 一、知識(shí)點(diǎn)11)相交——有且只有一個(gè)公共點(diǎn);(2)平行——在同一平面內(nèi),沒有公共點(diǎn);(3)異面——不在任何一個(gè)平面內(nèi),沒有公共點(diǎn);.. :推...
2024-11-09 12:02
【摘要】ZPZ空間“角度”問題設(shè)直線,lm的方向向量分別為,abla?mla?mb???若兩直線所成的角為,則,lm(0)2???≤≤cosabab???復(fù)習(xí)引入(1)定義:設(shè)a,b是兩條異面直線,過空
2025-06-22 12:13
【摘要】第一篇:立體幾何中不等式問題的證明方法 例談立體幾何中不等式問題的證明方法 立體幾何中的不等式問題具有很強(qiáng)的綜合性,解決這類問題既要有較強(qiáng)的空間想象能力,又要有嚴(yán)密的邏輯思維能力,因此有一定的難度...
2024-11-12 12:34
【摘要】立體幾何體積問題1、在如圖所示的五面體中,四邊形為菱形,且,平面,,為中點(diǎn).(1)求證平面;(2)若平面平面,求到平面的距離.【答案】(1)見解析;(2)試題解析(2)由(1)得平面,所以到平面的距離等于到平面的距離.取的中點(diǎn),連接,因?yàn)樗倪呅螢榱庑?,且,,所以,,因?yàn)槠矫嫫矫妫矫嫫矫?,所以平面,,因?yàn)?,所以,學(xué)
【摘要】空間向量在立體幾何中的應(yīng)用5前段時(shí)間我們研究了用空間向量求角(包括線線角、線面角和面面角)、求距離(包括線線距離、點(diǎn)面距離、線面距離和面面距離)今天我來研究如何利用空間向量來解決立體幾何中的有關(guān)證明及計(jì)算問題。一、空間向量的運(yùn)算及其坐標(biāo)運(yùn)算的掌握二、立體
2025-01-14 14:05
【摘要】秭歸縣屈原高中張鴻斌專題立幾問題的向量解法高考復(fù)習(xí)建議傳統(tǒng)的立幾問題是用立幾的公理和定理通過從“形”到“式”的邏輯推理,解決線與線、線與面、面與面的位置關(guān)系以及幾何體的有關(guān)問題,常需作輔助線,但有時(shí)卻不易作出,而空間向量解立幾問題則體現(xiàn)了“數(shù)”與“形”的結(jié)合,通過向量的代數(shù)計(jì)算解決問題,無須添加輔助線。用空間向量解立幾問題
2024-11-17 12:27
【摘要】主講人對(duì)外經(jīng)貿(mào)大學(xué)附中沈海英立體幾何中的定值問題第一課:立體幾何中定值問題概述王秀彩特級(jí)教師工作室高中的立體幾何教學(xué)中,立體幾何圖形在變化過程中,其中某些幾何元素的幾何量保持不變,或幾何元素間的某些幾何性質(zhì)或位置關(guān)系不變,這些圖形變化中的不變因素我們稱之為定值,與之相關(guān)的問題稱為定值問題.定
2024-12-02 14:09
【摘要】;菲華論壇;在西墎城,要小心壹點(diǎn).壹旦有人對(duì)付烈焰,你就立刻帶著所有烈焰の人,進(jìn)入鞠氏宅院.”鞠言對(duì)高鳳說道.“嗯,俺明白.”高鳳點(diǎn)頭.她也想跟著鞠言壹起走,但是,她不能將整個(gè)烈焰商會(huì)扔下.至于帶著烈焰の所有人跟鞠言走,那就更不可能了.“事不宜遲,鞠言,俺們立刻返回藍(lán)曲郡城.”鄒尚云揮手說道.兩人當(dāng)即,便離開西墎
2024-08-17 23:24
【摘要】第一篇:立體幾何的平行與證明問題 立體幾何 1.知識(shí)網(wǎng)絡(luò) 一、經(jīng)典例題剖析 考點(diǎn)一點(diǎn)線面的位置關(guān)系 1、設(shè)l是直線,a,β是兩個(gè)不同的平面() A.若l∥a,l∥β,則a∥βB.若l∥a,...
2024-11-16 23:04
【摘要】立體幾何中探索性問題的向量解法近幾年的高考對(duì)新課程增加的新內(nèi)容的考查形式和要求已經(jīng)發(fā)生重大變化,向量、導(dǎo)數(shù)等內(nèi)容已經(jīng)由解決問題的輔助地位上升為分析問題和解決問題時(shí)必不可少的工具,成為綜合運(yùn)用數(shù)學(xué)知識(shí)、多角度展開解題思路的重要命題素材。高考試卷中立體幾何試題不斷出現(xiàn)了一批具有探究性、開放性的試題,對(duì)這些試題的研究不難發(fā)現(xiàn),如果靈活的運(yùn)用平面向量和空間向量知識(shí)來探求這類問題,將是更好的形與數(shù)的結(jié)
2024-10-08 15:35