【摘要】主要內(nèi)容典型例題第六章定積分及其應(yīng)用習(xí)題課(一)問題1:曲邊梯形的面積問題2:變速直線運(yùn)動(dòng)的路程存在定理廣義積分定積分定積分的性質(zhì)定積分的計(jì)算法牛頓-萊布尼茨公式()d()()bafxxFbFa??
2024-09-07 12:42
【摘要】第六節(jié)經(jīng)濟(jì)學(xué)中的常用函數(shù)一、需求函數(shù)如果價(jià)格是決定需求量的最主要因素,可以認(rèn)為Q是P的函數(shù)。記作)(PfQ?則f稱為需求函數(shù).需求的含義:消費(fèi)者在某一特定的時(shí)期內(nèi),在一定的價(jià)格條件下對(duì)某種商品具有購買力的需要.,bPaQ??線性需求函數(shù):常見的需求函數(shù):2cPbPaQ???二次
2024-08-28 11:12
【摘要】微積分在經(jīng)濟(jì)學(xué)的應(yīng)用畢業(yè)論文目錄標(biāo)題 1中文摘要 11引言 12微積分在經(jīng)濟(jì)學(xué)的應(yīng)用 1邊際分析 1彈性分析 3彈性的概念 3需求彈性 3需求彈性與總收入的關(guān)系 4多元函數(shù)偏導(dǎo)數(shù)在經(jīng)濟(jì)分析中的應(yīng)用 5邊際經(jīng)濟(jì)量 5偏彈性 6偏導(dǎo)數(shù)求極值 8積分在經(jīng)濟(jì)分析中的應(yīng)用 9邊際函數(shù)求原函數(shù) 9消費(fèi)者剩
2025-06-28 20:29
【摘要】一、由邊際函數(shù)求原函數(shù)二、由變化率求總量第八節(jié)定積分的經(jīng)濟(jì)應(yīng)用三、收益流的現(xiàn)值和將來值一、由邊際函數(shù)求原函數(shù)25()7Cxx???0()(0)()dxCxCCxx????0251000(7)dxxx????例1已知邊際成本為,固
【摘要】一、柱面與旋轉(zhuǎn)曲面二、二次曲面三、小結(jié)思考題第五節(jié)曲面及其方程本節(jié)只對(duì)一些常見的曲面,圍繞下面兩個(gè)基本問題進(jìn)行討論:(Ⅱ)已知坐標(biāo)間的關(guān)系式,研究曲面形狀.(討論柱面(cylinder)、旋轉(zhuǎn)曲面(rotatingsurface))(討論二次曲面(twicesurface))(Ⅰ)已知曲面作為點(diǎn)的軌
【摘要】一、偏導(dǎo)數(shù)的定義及其計(jì)算方法二、偏導(dǎo)數(shù)的幾何意義及函數(shù)偏導(dǎo)數(shù)存在與函數(shù)連續(xù)的關(guān)系三、高階偏導(dǎo)數(shù)第二節(jié)偏導(dǎo)數(shù)及其在經(jīng)濟(jì)分析中的應(yīng)用五、小結(jié)思考題四、偏導(dǎo)數(shù)在經(jīng)濟(jì)分析中的應(yīng)用交叉彈性定義設(shè)函數(shù)),(yxfz?在點(diǎn)),(00yx的某一鄰域內(nèi)有定義,
2024-08-28 16:43
【摘要】微積分的基本思想及其在經(jīng)濟(jì)學(xué)中的應(yīng)用摘要:微積分局部求近似、極限求精確的基本思想貫穿于整個(gè)微積分學(xué)體系中,而微積分在各個(gè)領(lǐng)域中又有廣泛的應(yīng)用,隨著市場(chǎng)經(jīng)濟(jì)的不斷發(fā)展,微積分的地位也與日俱增,本文著重研究微分在經(jīng)濟(jì)活動(dòng)中邊際分析、彈性分析、最值分析的應(yīng)用,以及積分在最優(yōu)化問題、資金流量的現(xiàn)值問題中的應(yīng)用。關(guān)鍵詞:微分積分基本思想應(yīng)用微積分是人類智
2025-01-24 17:07
【摘要】微積分的基本思想及其在經(jīng)濟(jì)學(xué)中的應(yīng)用摘要:微積分局部求近似、極限求精確的基本思想貫穿于整個(gè)微積分學(xué)體系中,而微積分在各個(gè)領(lǐng)域中又有廣泛的應(yīng)用,隨著市場(chǎng)經(jīng)濟(jì)的不斷發(fā)展,微積分的地位也與日俱增,本文著重研究微分在經(jīng)濟(jì)活動(dòng)中邊際分析、彈性分析、最值分析的應(yīng)用,以及積分在最優(yōu)化問題、資金流量的現(xiàn)值問題中的應(yīng)用。關(guān)鍵詞:微分積分
2024-12-07 10:51
【摘要】一、定積分的元素法二、平面圖形的面積第七節(jié)定積分的幾何應(yīng)用三、旋轉(zhuǎn)體的體積四、平行截面面積已知的立體的體積五、小結(jié)回顧曲邊梯形求面積的問題()dbaAfxx??一、定積分的元素法曲邊梯形由連續(xù)曲線)(xfy?)0)((?xf、x軸與兩條直線ax?、bx?所圍
2024-08-28 16:42
【摘要】一、微分方程在經(jīng)濟(jì)中的應(yīng)用二、小結(jié)第三節(jié)一階微分方程在經(jīng)濟(jì)學(xué)中的綜合應(yīng)用1.分析商品的市場(chǎng)價(jià)格與需求量(供應(yīng)量)之間的函數(shù)關(guān)系例1某商品的需求量x對(duì)價(jià)格p的彈性為3lnp?.若該商品的最大需求量為1200(即p=0時(shí),x=1200)(p的單位為元,x的單位為千克)試
2024-09-07 12:46
【摘要】一、空間曲線及其方程二、空間曲線在坐標(biāo)面上的投影三、小結(jié)思考題第六節(jié)空間曲線及其方程一、空間曲線及其方程?????0),,(0),,(zyxGzyxF空間曲線的一般方程曲線上的點(diǎn)都滿足方程,滿足方程的點(diǎn)都在曲線上,不在曲線上的點(diǎn)不能同時(shí)滿足兩個(gè)方程.xoz
2024-09-07 12:38
【摘要】第二節(jié)向量及其線性運(yùn)算一、向量及其幾何表示二、向量的坐標(biāo)表示三、向量的模與方向角四、向量的線性運(yùn)算五、向量的分向量表示式六、小結(jié)思考題向量(vector):既有大小又有方向的量.向量表示:以1M為起點(diǎn),2M為終點(diǎn)的有向線段.1M2M??a?21MM一、向量及其幾何表示
2024-09-07 12:44
【摘要】一、問題的提出二、積分上限函數(shù)及其導(dǎo)數(shù)三、牛頓-萊布尼茨公式四、小結(jié)思考題第三節(jié)微積分基本公式變速直線運(yùn)動(dòng)中位置函數(shù)與速度函數(shù)的聯(lián)系變速直線運(yùn)動(dòng)中路程為21()dTTvtt?設(shè)某物體作直線運(yùn)動(dòng),已知速度)(tvv?是時(shí)間間隔],[21TT上t的一個(gè)連續(xù)函數(shù),且0)(?tv
2024-08-28 08:39
【摘要】16-7定積分在經(jīng)濟(jì)學(xué)中的應(yīng)用2總成本=固定成本+可變成本)(qC0C)(1qC平均成本(單位成本)=qqCC)(10?收益=價(jià)格×銷量,即R(Q)=PQ.利潤=總收益-總成本,即L(Q)=R(Q)-C(Q)
2025-05-23 07:07
【摘要】若由方程可確定y是x的函數(shù),由表示的函數(shù),稱為顯函數(shù).例如,可確定顯函數(shù)可確定y是x的函數(shù),但此隱函數(shù)不易顯化.則稱此函數(shù)為隱函數(shù).第三節(jié)隱函數(shù)的導(dǎo)數(shù)和由參數(shù)方程確定的函數(shù)的導(dǎo)數(shù)一、隱函數(shù)的導(dǎo)數(shù)0),(?yxF
2025-08-07 16:24